Introduction: Understanding patterns and processes of microbial biogeography in soils is important for monitoring ecological responses to human activities, particularly in ecologically vulnerable areas such as the Qinghai-Xizang Plateau. Highland barley is the staple food of local people and has mainly been cultivated along the Yarlung Zangbo River valley in Xizang.
Methods: Here we investigated soil bacterial communities from 33 sampling sites of highland barley farmland in this region and compared them to those from wild ecosystems including alpine tundra, meadow, forest, and swamp.
Most in silico evolutionary studies commonly assumed that core genes are essential for cellular function, while accessory genes are dispensable, particularly in nutrient-rich environments. However, this assumption is seldom tested genetically within the pangenome context. In this study, we conducted a robust pangenomic Tn-seq analysis of fitness genes in a nutrient-rich medium for strains with a canonical open pangenome.
View Article and Find Full Text PDFBackgroud: The genus Mesorhizobium is shown by phylogenomics to be paraphyletic and forms part of a complex that includes the genera Aminobacter, Aquamicrobium, Pseudaminobacter and Tianweitania. The relationships for type strains belong to these genera need to be carefully re-evaluated.
Results: The relationships of Mesorhizobium complex are evaluated based on phylogenomic analyses and overall genome relatedness indices (OGRIs) of 61 type strains.
Symbiotic nitrogen fixation boosts legume growth and production in nitrogen-poor soils. It has long been assumed that fixed nitrogen increases reproductive success, but until now, the regulatory mechanism was unknown. Here, we report a symbiotic flowering pathway that couples symbiotic and nutrient signals to the flowering induction pathway in legumes.
View Article and Find Full Text PDFMigration from rhizosphere to rhizoplane is a key selecting process in root microbiome assembly, but not fully understood. Rhizobiales members are overrepresented in the core root microbiome of terrestrial plants, and here we report a genome-wide transposon-sequencing of rhizoplane fitness genes of beneficial Sinorhizobium fredii on wild soybean, cultivated soybean, rice, and maize. There were few genes involved in broad-host-range rhizoplane colonization.
View Article and Find Full Text PDFThe distribution and abundance of transposable elements across the tree of life have significantly shaped the evolution of cellular organisms, but the underlying mechanisms shaping these ecological patterns remain elusive. Here we establish a "common garden" approach to study causal ecological interactions between a xenogeneic conditional lethal sacB gene and the community of transposable insertion sequences (ISs) in a multipartite prokaryote genome. Xenogeneic sacB of low, medium, or high GC content was individually inserted into three replicons of a model bacterium Sinorhizobium fredii, and exhibited replicon- and GC-dependent variation in genetic stability.
View Article and Find Full Text PDFPlant growth-promoting rhizobacteria (PGPR) are widely used to improve soil nutrients and promote plant growth and health. However, the growth-promoting effect of a single PGPR on plants is limited. Here, we evaluated the effect of applying rhizobium 5038 (R5038) and two PGPR strains, MB35-5 (BA) and 3016 (PM), alone or in different combinations on the soil properties and rhizosphere bacterial community composition of soybean ().
View Article and Find Full Text PDFBacterial adaptation is largely shaped by horizontal gene transfer, xenogeneic silencing mediated by lineage-specific DNA bridgers (H-NS, Lsr2, MvaT and Rok), and various anti-silencing mechanisms. No xenogeneic silencing DNA bridger is known for α-proteobacteria, from which mitochondria evolved. By investigating α-proteobacterium Sinorhizobium fredii, a facultative legume microsymbiont, here we report the conserved zinc-finger bearing MucR as a novel xenogeneic silencing DNA bridger.
View Article and Find Full Text PDFObjective: Choline deficiency, one main trigger for nonalcoholic fatty liver disease (NAFLD), is closely related to lipid metabolism disorder. Previous study in a choline-deficient model has largely focused on gene expression rather than gene structure, especially sparse are studies regarding to alternative splicing (AS). In modern life science research, primary hepatocytes culture technology facilitates such studies, which can accurately imitate liver activity in vitro and show unique superiority.
View Article and Find Full Text PDFThe rhizobium-legume symbiosis is essential for sustainable agriculture by reducing nitrogen fertilizer input, but its efficiency varies under fluctuating soil conditions and resources. The nitrogen-related phosphotransferase system (PTS) consisting of PtsP, PtsO, and PtsN is required for optimal nodulation and nitrogen fixation efficiency of the broad-host-range Sinorhizobium fredii CCBAU45436 associated with diverse legumes, though the underlying mechanisms remain elusive. This work characterizes the PtsN-KdpDE-KdpFABC pathway that contributes to low potassium adaptation and competitive nodulation of CCBAU45436.
View Article and Find Full Text PDFIron homeostasis is strictly regulated in cellular organisms. The order enriched with symbiotic and pathogenic bacteria has evolved a lineage-specific regulator, RirA, responding to iron fluctuations. However, the regulatory role of RirA in bacterium-host interactions remains largely unknown.
View Article and Find Full Text PDFThe ubiquitous bacterial second messenger c-di-GMP is intensively studied in pathogens but less so in mutualistic bacteria. Here, we report a genome-wide investigation of functional diguanylate cyclases (DGCs) synthesizing c-di-GMP from two molecules of GTP in Sinorhizobium fredii CCBAU45436, a facultative microsymbiont fixing nitrogen in nodules of diverse legumes, including soybean. Among 25 proteins harboring a putative GGDEF domain catalyzing the biosynthesis of c-di-GMP, eight functional DGCs were identified by heterogenous expression in Escherichia coli in a Congo red binding assay.
View Article and Find Full Text PDFForeign AT-rich genes drive bacterial adaptation to new niches while challenging the existing regulation network. Here we report that MucR, a conserved regulator in α-proteobacteria, balances adaptation and regulatory integrity in Sinorhizobium fredii, a facultative microsymbiont of legumes. Chromatin immunoprecipitation sequencing coupled with transcriptomic data reveal that average transcription levels of both target and non-target genes, under free-living and symbiotic conditions, increase with their conservation levels.
View Article and Find Full Text PDFProkaryotes harbor a various proportion of accessory genes in their genomes. The integration of accessory functions with the core regulation network is critical for environmental adaptation, particularly considering a theoretically unlimited number of niches on the earth for microorganisms. Comparative genomics can reveal a co-occurrence pattern between a subset of accessory genes (or variations in core genes) and an adaptation trait, while comparative transcriptomics can further uncover whether a coordinated regulation of gene expression is involved.
View Article and Find Full Text PDFThe interkingdom coevolution innovated the rhizobium-legume symbiosis. The application of this nitrogen-fixing system in sustainable agriculture is usually impeded by incompatible interactions between partners. However, the progressive evolution of rhizobium-legume compatibility remains elusive.
View Article and Find Full Text PDFBacteria currently included in are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is .
View Article and Find Full Text PDFPlants establish symbioses with mutualistic fungi, such as arbuscular mycorrhizal (AM) fungi, and bacteria, such as rhizobia, to exchange key nutrients and thrive. Plants and symbionts have coevolved and represent vital components of terrestrial ecosystems. Plants employ an ancestral AM signaling pathway to establish intracellular symbioses, including the legume-rhizobia symbiosis, in their roots.
View Article and Find Full Text PDFComput Struct Biotechnol J
November 2020
The MucR/Ros family protein is conserved in alpha-proteobacteria and characterized by its zinc-finger motif that has been proposed as the ancestral domain from which the eukaryotic C2H2 zinc-finger structure evolved. In the past decades, accumulated evidences have revealed MucR as a pleiotropic transcriptional regulator that integrating multiple functions such as virulence, symbiosis, cell cycle and various physiological processes. Scattered reports indicate that MucR mainly acts as a repressor, through oligomerization and binding to multiple sites of AT-rich target promoters.
View Article and Find Full Text PDFConservation tillage in conjunction with straw mulching is a sustainable agricultural approach. However, straw mulching reduces the soil temperature, inhibits early maize growth and reduces grain yield in cold regions. To address this problem, we investigated the effects of inoculation of plant growth-promoting rhizobacteria (PGPR) on maize growth and rhizosphere microbial communities under conservation tillage in Northeast China.
View Article and Find Full Text PDFPathogenic bacteria need high-affinity zinc uptake systems to counteract the nutritional immunity exerted by infected hosts. However, our understanding of zinc homeostasis in mutualistic systems such as the rhizobium-legume symbiosis is limited. Here, we show that the conserved high-affinity zinc transporter ZnuABC and accessory transporter proteins (Zip1, Zip2, and c06450) made cumulative contributions to nodulation of the broad-host-range strain CCBAU45436.
View Article and Find Full Text PDFThe exact roles of various granule-associated proteins (GAPs) of polyhydroxybutyrate (PHB) are poorly investigated, particularly for bacteria associated with plants. In this study, four structural GAPs, named phasins PhaP1 to PhaP4, were identified and demonstrated as true phasins colocalized with PHB granules in NGR234, a facultative microsymbiont of and many other legumes. The conserved PhaP2 dominated in regulation of granule size under both free-living and symbiotic conditions.
View Article and Find Full Text PDFHerein the members of the Subcommittee on Taxonomy of Rhizobia and Agrobacteria of the International Committee on Systematics of Prokaryotes review recent developments in rhizobial and agrobacterial taxonomy and propose updated minimal standards for the description of new species (and genera) in these groups. The essential requirements (minimal standards) for description of a new species are (1) a genome sequence of at least the proposed type strain and (2) evidence for differentiation from other species based on genome sequence comparisons. It is also recommended that (3) genetic variation within the species is documented with sequence data from several clearly different strains and (4) phenotypic features are described, and their variation documented with data from a relevant set of representative strains.
View Article and Find Full Text PDF