Due to increased drug and radiation tolerance, there is an urgent need to develop novel anticancer agents. In our previous study, we performed a series of structural modifications of ursolic acid (UA), a natural product of pentacyclic triterpenes, and found UA232, a derivative with stronger anti-tumor activity. experiments showed that UA232 inhibited proliferation, induced G/G arrest, and promoted apoptosis in human breast cancer and cervical cancer cells.
View Article and Find Full Text PDFAcidic nucleoplasmic DNA binding protein 1 (AND-1, also known as WD repeat and HMG-box DNA-binding protein 1, WDHD1) plays an important role in DNA replication and repair, but the relationship between AND-1 and radiosensitivity is not well understood. This research explored the impact of AND-1 on the radiosensitivity of non-small cell lung cancer (NSCLC) for the first time. NSCLC cells were treated with AND-1 siRNA or a new AND-1 inhibitor, CH-3, and clonogenic survival assay was used to characterize cell radiosensitivity.
View Article and Find Full Text PDFThe phosphate group functionalized metal-organic frameworks (MOFs) as the adsorbent for removal of U(VI) from aqueous solution still suffer from low adsorption efficiency, due to the low grafting rate of groups into the skeleton structure. Herein, a novel phosphate group functionalized metal-organic framework nanoparticles (denoted as FeO@SiO@UiO-66-TPP NPs) designed and prepared by the chelation between Zr and phytic acid, showing fast adsorption rate and outstanding selectivity in aqueous media including 10 coexisting ions. The FeO@SiO@UiO-66-TPP was properly characterized by TEM, FT-IR, BET, VSM and Zeta potential measurement.
View Article and Find Full Text PDFProtein lysine 2-hydroxyisobutyrylation (Khib) has recently been shown to play a critical role in the regulation of cellular processes. However, the mechanism and functional consequence of Khib in prokaryotes remain unclear. Here we report that TmcA, an RNA acetyltransferase, functions as a lysine 2-hydroxyisobutyryltransferase in the regulation of transcription.
View Article and Find Full Text PDFNonapoptotic types of regulated cell death have attracted widespread interest since the discovery that certain forms of cell necrosis can be regulated. In particular, research into cell necroptosis has made significant progress in connection with kidney, inflammatory, degenerative and neoplastic diseases. Inhibitors targeting the critical necroptosis-associated proteins RIPK1/3 and MLKL have been in development for more than a decade.
View Article and Find Full Text PDFContext: Ursolic acid (UA), a natural product, shows a broad spectrum of anticancer effects. However, the poor bioavailability and efficacy of UA limit its clinical application.
Objective: We developed novel analogues of UA with enhanced antitumor activities by the extensive chemical modification of UA.
The development of methods to effectively capture N-glycopeptides from the complex biological samples is crucial to N-glycoproteome profiling. Herein, the hydrophilic chitosan-functionalized magnetic graphene nanocomposites (denoted as FeO-GO@PDA-Chitosan) were designed and synthesized via a simple two-step modification (dopamine self-polymerization and Michael addition). The FeO-GO@PDA-Chitosan nanocomposites exhibited good performances with low detection limit (0.
View Article and Find Full Text PDF: Acetyl-CoA Carboxylase (ACC) is an essential rate-limiting enzyme in fatty acid metabolism. For many years, ACC inhibitors have gained great attention for developing therapeutics for various human diseases including microbial infections, metabolic syndrome, obesity, diabetes, and cancer. : We present a comprehensive review and update of ACC inhibitors.
View Article and Find Full Text PDFEfficient enrichment glycoproteins/glycopeptides from complex biological solutions are very important in the biomedical sciences, in particular biomarker research. In this work, the high hydrophilic polyethylenimine conjugated polymaltose polymer brushes functionalized magnetic FeO nanoparticles (NPs) denoted as FeO-PEI-pMaltose were designed and synthesized via a simple two-step modification. The obtained superhydrophilic FeO-PEI-pMaltose NPs displayed outstanding advantages in the enrichment of N-linked glycopeptides, including high selectivity (1:100, mass ratios of HRP and bovine serum albumin (BSA) digest), low detection limit (10 fmol), large binding capacity (200 mg/g), and high enrichment recovery (above 85%).
View Article and Find Full Text PDFThe development of methods to isolate and enrich low-abundance glycopeptides from biological samples is crucial to glycoproteomics. Herein, we present an easy and one-step surface modification strategy to prepare hydrophilic maltose functionalized Fe3O4 nanoparticles (NPs). First, based on the chelation of the catechol ligand with iron atoms, azido-terminated dopamine (DA) derivative was assembled on the surface of magnetic Fe3O4 nanoparticles by sonication.
View Article and Find Full Text PDF