Publications by authors named "Changdong Ke"

Schwertmannite (Sch) is found in environments abundant in iron and sulfate. Microorganisms that utilize iron or sulfate can induce the phase transition of Schwertmannite, consequently leading to the redistribution of coexisting pollutants. However, the impact of the molar ratio of sulfate to iron (S/Fe) on the microbial-mediated transformation of Schwertmannite and its implications for the fate of cadmium (Cd) have not been elucidated.

View Article and Find Full Text PDF

A robust modeling approach for predicting heavy metal removal by sulfate-reducing bacteria (SRB) is currently missing. In this study, four machine learning models were constructed and compared to predict the removal of Cd, Cu, Pb, and Zn as individual ions by SRB. The CatBoost model exhibited the best predictive performance across the four subsets, achieving R values of 0.

View Article and Find Full Text PDF

Schwertmannite (Sch) is a highly bioavailable iron-hydroxysulfate mineral commonly found in acid mine drainage contaminated environment rich in sulfate (SO). Microbial-mediated Sch transformation has been well-studied, however, the understanding of how SO availability affects the microbial-mediated Sch transformation and the secondary minerals influence microbes is relatively limited. This study examined the effect of SO availability on the iron-reducing bacteria (FeRB) and SO-reducing bacteria (SRB) consortium-mediated Sch transformation and the resulting secondary minerals in turn on bacteria.

View Article and Find Full Text PDF

Photosensitized biohybrid system (PBS) enables bacteria to exploit light energy harvested by semiconductors for rapid pollutants transformation, possessing a promising future for water reclamation. Maintaining a biocompatible environment under photocatalytic conditions is the key to developing PBS-based treatment technologies. Natural microbial cells are surrounded by extracellular polymeric substances (EPS) that either be tightly bound to the cell wall (i.

View Article and Find Full Text PDF

The widespread distribution of nanoplastics and dissolved organic matter (DOM) in sewage raises concerns about the potential impact of DOM on the bioavailability of nanoplastics. In this study, the effects of different sizes (100 nm and 350 nm) of polystyrene nanoplastics (PS-NPs, 50 mg/L) and combined with 10 mg/L or 50 mg/L DOMs (fulvic acid, humic acid and sodium alginate) on the growth and denitrification ability of Thiobacillus denitrificans were investigated. Results showed that 100 nm PS-NPs (50 mg/L) cause a longer delay in the nitrate reduction (3 days) of T.

View Article and Find Full Text PDF

Efficient remedies for living organisms including bacteria to counteract cadmium (Cd) toxicity are still highly needed. Plant toxicity studies have showed that exogenous S(-II) (including hydrogen sulfide and its ionic forms, i.e.

View Article and Find Full Text PDF

Redox-dynamic environments such as river floodplains and paddy fields have been demonstrated to be important sources of CdS colloids. To date, the aggregation kinetics of CdS colloids had not yet been studied, and the structure and properties of macromolecules on the interaction between different macromolecules and CdS colloids, as well as the aggregation behavior of CdS colloids are unclear. This study investigated the colloidal stability of CdS colloids in model aqueous systems with various solution chemistry and representative of macromolecules.

View Article and Find Full Text PDF

Schwertmannite (Sch) is an iron-hydroxysulfate mineral commonly found in acid mine drainage contaminated environment. The transformation mechanism of Sch mediated by pure cultured iron-reducing bacteria (FeRB) or sulfate-reducing bacteria (SRB) has been studied. However, FeRB and SRB widely coexist in the environment, the mechanism of Sch transformation by the consortia of FeRB and SRB is still unclear.

View Article and Find Full Text PDF

Microbial sulfidization of arsenic (As)-bearing jarosite involves complex processes and is yet to be fully elucidated. Here, we investigated the behavior of As during reductive dissolution of As(V)-bearing jarosite by a pure sulfate reducing bacterium with or without dissolved SO amendment. Changes of aqueous chemistry, mineralogical characteristics, and As speciation were examined in batch experiments.

View Article and Find Full Text PDF

Jarosite is one of the iron oxyhydroxysulfate minerals that are commonly found in acid mine drainage (AMD) systems. In natural environments, phosphate and sulfate reducing bacteria (SRB) may be coupled to jarosite reduction and transformation. In this research, the effect of phosphate on jarosite reduction by SRB and the associated secondary mineral formation was studied using batch experiments.

View Article and Find Full Text PDF

The sediment-water interface is not only an important location for substrate conversion in a mariculture system, but also a major source of eutrophication. This study aimed to clarify the characteristics of inorganic nitrogen (ammonia, nitrite and nitrate) removal by Marichromatium gracile YL28 in the presence of both organic nitrogen and inorganic nitrogen. The results showed that, in the presence of peptone or urea, seaweed oligosaccharides (SOS) effectively enhanced the ammonia removal capacity of YL28 (6.

View Article and Find Full Text PDF

Arsenic (As) methylation is regarded as an efficient strategy for As contamination remediation by As volatilization. However, most microorganisms display low As volatilization efficiency, which is possibly linked to As efflux transporters competing for cytoplasmic As(III) as a substrate. Here, we developed two types of As biosensors in Escherichia coli to compare the As efflux rate of three efflux transporters and to further investigate the correlation between As efflux rates and As volatilization.

View Article and Find Full Text PDF

Enzymes could act as a useful tool for environmental bioremediation. Arsenic (As) biomethylation, which can convert highly toxic arsenite [As(III)] into low-toxic volatile trimethylarsine, is considered to be an effective strategy for As removal from contaminated environments. As(III) S-adenosylmethyltransferase (ArsM) is a key enzyme for As methylation; its properties and preparation are crucial for its wide application.

View Article and Find Full Text PDF

Innovative methods to lower arsenic (As) exposure are sought. The As regulatory protein (ArsR) is reported of having high affinity and specificity to arsenite [As(III)]. Rhodopseudomonas palustris CGA009 is a good model organism for studying As detoxification due to at least three ars operons and four diverse arsR on the genome.

View Article and Find Full Text PDF