Publications by authors named "Changdon Kee"

In this study, we developed a low-cost, high-precision vehicle navigation system for deep urban multipath environments using time-differenced carrier phase (TDCP) measurements. Although many studies are being conducted to navigate autonomous vehicles using the global positioning system (GPS), it is difficult to obtain accurate navigation solutions due to multipath errors in urban environments. Low-cost GPS receivers that determine the solution based on pseudorange measurements are vulnerable to multipath errors.

View Article and Find Full Text PDF

In this study, we combined a time-differenced carrier phase (TDCP)-based global positioning system (GPS) with an inertial navigation system (INS) to form an integrated system that appropriately considers noise correlation. The TDCP-based navigation system can determine positions precisely based on high-quality carrier phase measurements without difficulty resolving integer ambiguity. Because the TDCP system contains current and previous information that violate the format of the conventional Kalman filter, a delayed state filter that considers the correlation between process and measurement noise is utilized to improve the accuracy and reliability of the TDCP-based GPS/INS.

View Article and Find Full Text PDF

Earthquakes generate energy that propagates into the ionosphere and incurs co-seismic ionospheric disturbances (CIDs), which can be observed in ionospheric delay measurements. In most cases, the CID has a weak signal strength, because the energy in the atmosphere transferred from the earthquake dissipates as it travels toward the ionosphere. It is particularly hard to observe at reference stations that are located far from the epicenter.

View Article and Find Full Text PDF

When a user receiver is tracking an authentic signal, a spoofing signal can be transmitted to the user antenna. The question is under what conditions does the tracking point of the receiver move from the authentic signal to the spoofing signal? In this study, we develop a spoofing process equation (SPE) that can be used to calculate the tracking point of the delay lock loop (DLL) at regular chip intervals for the entire spoofing process. The condition for a successful spoofing signal is analyzed using the SPE.

View Article and Find Full Text PDF

Many strategies for treating dual-frequency cycle slip, which can seriously affect the performance of a carrier-phase-based positioning system, have been studied over the years. However, the legacy method using the Melbourne-Wübbena (MW) combination and ionosphere combination is vulnerable to pseudorange multipath effects and high ionospheric storms. In this paper, we propose a robust algorithm to detect and repair dual-frequency cycle slip for the network-based real-time kinematic (RTK) system which generates high-precision corrections for users.

View Article and Find Full Text PDF

The Hatch filter is a code-smoothing technique that uses the variation of the carrier phase. It can effectively reduce the noise of a pseudo-range with a very simple filter construction, but it occasionally causes an ionosphere-induced error for low-lying satellites. Herein, we propose an optimal single-frequency (SF) divergence-free Hatch filter that uses a satellite-based augmentation system (SBAS) message to reduce the ionospheric divergence and applies the optimal smoothing constant for its smoothing window width.

View Article and Find Full Text PDF

The position accuracy of Global Navigation Satellite System (GNSS) modules is one of the most significant factors in determining the feasibility of new location-based services for smartphones. Considering the structure of current smartphones, it is impossible to apply the ordinary range-domain Differential GNSS (DGNSS) method. Therefore, this paper describes and applies a DGNSS-correction projection method to a commercial smartphone.

View Article and Find Full Text PDF

This paper presents a means of carrier phase cycle slip detection for an inertial-aided global positioning system (GPS), which is based on consideration of the satellite geometry. An integrated navigation solution incorporating a tightly coupled time differenced carrier phase (TDCP) and inertial navigation system (INS) is used to detect cycle slips. Cycle-slips are detected by comparing the satellite-difference (SD) and time-difference (TD) carrier phase measurements obtained from the GPS satellites with the range estimated by the integrated navigation solution.

View Article and Find Full Text PDF

A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite's state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three.

View Article and Find Full Text PDF

The ephemeris data format of legacy GPS receivers is improper for positioning stationary pseudolites on the ground. Therefore, to utilize pseudolites for navigation, GPS receivers must be modified so that they can handle the modified data formats of the pseudolites. Because of this problem, the practical use of pseudolites has so far been limited.

View Article and Find Full Text PDF

We propose a vector tracking loop (VTL) algorithm for an asynchronous pseudolite navigation system. It was implemented in a software receiver and experiments in an indoor navigation system were conducted. Test results show that the VTL successfully tracks signals against the near-far problem, one of the major limitations in pseudolite navigation systems, and could improve positioning availability by extending pseudolite navigation coverage.

View Article and Find Full Text PDF