Background: It was essential to identify individuals at high risk of fragility fracture and prevented them due to the significant morbidity, mortality, and economic burden associated with fragility fracture. The quantitative ultrasound (QUS) showed promise in assessing bone structure characteristics and determining the risk of fragility fracture.
Aims: To evaluate the performance of a multi-channel residual network (MResNet) based on ultrasonic radiofrequency (RF) signal to discriminate fragility fractures retrospectively in postmenopausal women, and compared it with the traditional parameter of QUS, speed of sound (SOS), and bone mineral density (BMD) acquired with dual X-ray absorptiometry (DXA).
Objective: Synovial inflammation, which precedes other pathological changes in osteoarthritis (OA), is primarily initiated by activation and M1 polarization of macrophages. While macrophages play a pivotal role in the inflammatory process of OA, the mechanisms underlying their activation and polarization remain incompletely elucidated. This study aims to investigate the role of NOD2 as a reciprocal modulator of HMGB1/TLR4 signaling in macrophage activation and polarization during OA pathogenesis.
View Article and Find Full Text PDFInflammatory response in macrophages on account of prostheses-derived wear particles is the leading cause of artificial joint failure. However, the mechanism by which wear particles initiate macrophage inflammation has not been fully elucidated. Previous research studies have identified TANK-binding kinase 1 (TBK1) and stimulator of interferon genes (STING) as potential factors in inflammation and autoimmune diseases.
View Article and Find Full Text PDFArticular cartilage injury is common in various conditions, including osteoarthritis, rheumatic diseases, and trauma. Current treatments for cartilage injury fail to completely regenerate the damaged cartilage. Mesenchymal stromal cells (MSCs) have emerged as potential candidates for cartilage regeneration.
View Article and Find Full Text PDFObjective: Wear particles induce inflammation and the further osteolysis around the prosthesis, has been proven to be the main cause of aseptic hip joint loosening. In this research, we aimed to clarify whether human umbilical cord mesenchymal stem cells (HUCMSCs) could inhibit the titanium particles-induced osteolysis and shed light upon its mechanism.
Methods: The expression of chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 3 (CCL3) and chemokine (C-C motif) ligand 5 (CCL5) were examinjed in clinical specimens of aseptic hip prosthesis loosening patients.
Quantitative ultrasound (QUS) is a promising screening method for osteoporosis. In this study, a new method to improve the diagnostic accuracy of QUS was established in which a multichannel convolutional neural network (MCNN) processes the raw radiofrequency (RF) signal of QUS. The improvement in the diagnostic accuracy of osteoporosis using this new method was evaluated by comparison with the conventional speed of sound (SOS) method.
View Article and Find Full Text PDFAs total joint replacement is widely applied for severe arthropathy, peri-prosthetic aseptic loosening as one of the main causes of implant failure has drawn wide attention. Wear particles such as titanium particles (TiPs) derived from prosthesis can initiate macrophages inflammation and sequentially activate osteoclasts, which results in bone resorption and osteolysis for long-term. Therefore, inhibiting wear particles induced macrophages inflammation is considered as a promising therapy for AL.
View Article and Find Full Text PDFAseptic loosening (AL), secondary to particle-caused periprosthetic osteolysis, is one of the main reasons of artificial joint failure. Suppressing the macrophage inflammatory response caused by wear particles extends the life of prosthesis, and the long noncoding RNAs (lncRNAs) may play a predominant part in it. Here, titanium particles' (TiPs') stimulation increases both the cytoplasmic and nuclear levels of lncRNA Neat1 in bone marrow derived macrophages (BMDMs), which further induces the inflammatory response.
View Article and Find Full Text PDFOsteopontin (OPN) has been proved to be closely related to the pathogenesis of osteoarthritis (OA), but the role of OPN in the pathogenesis of OA has not been fully clarified. Current studies on OPN in OA mostly focus on articular cartilage, synovial membrane and articular fluid, while ignoring its role in OA subchondral bone turnover and remodeling. In this study, we used a destabilization OA mouse model to investigate the role of OPN in OA subchondral bone changes.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Osteoporosis is a metabolic osteopathy syndrome, and the incidence of osteoporosis increases significantly with age. Currently, bone quantitative ultrasound (QUS) has been considered as a potential method for screening and diagnosing osteoporosis. However, its diagnostic accuracy is quite low.
View Article and Find Full Text PDFSpermidine has been known to inhibit the production of pro-inflammatory cytokines. However, there are no reports about anti-inflammatory effects of spermidine on osteoarthritis (OA). Herein, we examined whether OA progression could be delayed by intraperitoneal injection (i.
View Article and Find Full Text PDFAseptic loosening (AL) caused by wear particles released from implant surfaces is one of the main causes for the failure of artificial joints, which is initiated by macrophage inflammatory responses. Emerging evidence suggests that the member of a broad-complex, tramtrack, bric-a-brac/poxvirus and zinc finger (BTB/POZ) family as well as zinc finger and BTB domain-containing protein 20 (ZBTB20) can inhibit IκBα gene transcription, promote NF-κB activation, and initiate innate immune responses. The molecular mechanism(s) by which ZBTB20 contributes to titanium particle (TiP)-induced macrophage inflammatory responses and osteolysis has not been fully elucidated.
View Article and Find Full Text PDFBackground: Recent studies have suggested association between the ABO blood group and inflammation, which was a crucial pathological process of primary knee osteoarthritis. The aim of this study was to investigate the association between the ABO blood group and primary knee osteoarthritis and the severity of primary knee osteoarthritis evaluated by the Kellgren/Lawrence score, as well as the histopathologic association in a subgroup of patients.
Methods: We performed a retrospective review of patients with primary knee osteoarthritis that served as the case group and a random sampling of healthy blood donors that served as the control group.
Total hip arthroplasty (THA) is a widely-used surgical intervention for treating patients with end-stage degenerative and inflammatory osteoarthropathy. However, wear particles from the artificial titanium joint can induce osteolysis, limiting the long-term survivorship of THA. Monocyte/macrophage lineage cells are the key players in the response to wear particles, and the proinflammatory NF-κB and phosphoinositide 3-kinase (PI3K)-AKT Ser/Thr kinase (AKT)-signaling pathways have been shown to be the most important contributors to wear particle-induced osteolysis.
View Article and Find Full Text PDFObjective: To investigate the influence of preoperative osteopenia/osteoporosis on periprosthetic bone loss after total hip arthroplasty (THA) and the efficiency of zoledronate (ZOL) treatment in periprosthetic bone preservation.
Methods: This multicenter, prospective cohort study was conducted in four centers between April 2015 and October 2017. Patients were assigned to Normal BMD, Osteopenia, and Osteoporosis+ZOL groups.
For patients undergoing total joint replacement (TJR), one of the complications, aseptic loosening, could cause serious consequences, such as revision surgery. In early research, pattern recognition receptors (PRRs) were reported to play vital roles in recognizing wear particles from the prosthesis and initiating an inflammation response. In this research, we aimed to clarify the role of nucleotide-binding and oligomerization domain containing protein 2 (NOD2), one of the PRRs, in macrophage-induced aseptic loosening in vivo and in vitro.
View Article and Find Full Text PDFAseptic loosening due to wear particle-induced osteolysis is the main cause of arthroplasty failure and the influence of postmenopausal osteoporosis and anti-osteoporosis treatment on Titanium (Ti) particle-induced osteolysis remains unclear. 66 C57BL/6J female mice were used in this study. Ovariectomy (OVX) was performed to induce osteopenia mice and confirmed by micro-CT.
View Article and Find Full Text PDFArthroplasty has been widely performed worldwide. However, peri-prosthetic osteolysis and aseptic loosening induced by macrophages activated by wear particles still remain a predominant cause of long term prosthetic failure. Our study aimed to identify the role of small heterodimer partner (SHP) in secretion of proinflammatory cytokines by macrophages through Toll-like Recepters (TLR)s signaling pathway activated by wear particles both in vivo and in vitro.
View Article and Find Full Text PDFPurpose: We introduced a new technique of all-arthroscopic anatomical anterior talofibular ligament (ATFL) reconstruction using semitendinosus autografts.
Methods: From June 2012 to June 2013, 28 patients with chronic ATFL rupture underwent arthroscopic anatomic reconstruction of the ATFL. They were divided into the Broström group (n = 16) and reconstruction group (n = 12).
Background: Polylactic acid polymer interference screws are commonly used in anterior cruciate ligament (ACL) reconstructions, especially in proximal tibia fixation. However, several concerns have been raised, including the acid products during its degradation . In recent years, biodegradable magnesium (Mg)-based implants have become attractive because of their favourable mechanical properties, which are more similar to those of natural bone when compared with other degradable materials, such as polymers, apart from their alkaline nature during degradation.
View Article and Find Full Text PDFBackground: We introduce a novel method of combining the standard anteromedial and anterolateral approaches and dual posterolateral approaches in the arthroscopic treatment of posterior and anterior ankle impingement syndrome and compare the postoperative outcomes with conventional anteromedial/anterolateral and posteromedial/posterolateral approaches.
Methods: From January 2013 to January 2015, we treated 28 patients with posterior and anterior ankle impingement syndrome by arthroscopy. The patients were divided into the conventional group (n = 13) and the modified group (n = 15) according to the surgical approaches used in the operation.
Background: Subtrochanteric femoral shortening osteotomy is a crucial procedure to prevent nerve injury in total hip arthroplasty for severe developmental dysplasia of the hip. Transverse osteotomy was first applied, and other modified methods have also been reported. Each has its own advantages and limitations, but no definitive conclusions regarding differences in outcomes have been reached to date.
View Article and Find Full Text PDF