This study investigated the probiotic potential of lactic acid bacteria (LAB) strains isolated from the intestines of quails during the late egg-laying period. Eight LAB strains were examined for their tolerance to acid and bile salts, antibiotic susceptibility, self-aggregation, hydrophobicity, and antibacterial activity. Among these, E.
View Article and Find Full Text PDFVX, a well-known organophosphorus nerve agent (OPNA), poses a significant threat to public safety if employed by terrorists. Obtaining complete metabolites is critical to unequivocally confirm its alleged use/exposure and elucidate its whole-molecular metabolism. However, the nitrogenous VX metabolites containing 2-diisopropylaminoethyl moiety from urinary excretion remain unknown.
View Article and Find Full Text PDFPeptide drugs have disadvantages such as low stability, short half-life and side effects, which limit their widespread use in clinical practice. Therefore, peptide drugs can be modified to improve these disadvantages. Numerous studies have shown that alkyl-modified peptide drugs can self-assemble to prolong the duration of efficacy and/or reduce side effects.
View Article and Find Full Text PDFShellfish poisoning is a common food poisoning. To comprehensively characterize proteome changes in the whole brain due to shellfish poisoning, Tandem mass tag (TMT)-based differential proteomic analysis was performed with a low-dose chronic shellfish poisoning model in mice. A total of 6798 proteins were confidently identified, among which 123 proteins showed significant changes (fold changes of >1.
View Article and Find Full Text PDFThe retrospective detection of organophosphorus nerve agents (OPNAs) exposure has been achieved by the off-site analysis of OPNA-human serum albumin (HSA) adducts using mass spectrometry-based detection approaches. However, few specific methods are accessible for on-site detection. To address this, a novel immunofluorescence microfluidic chip (IFMC) testing system combining europium chelated microparticle (EuCM) with self-driven microfluidic chip assay has been established to unambiguously determine soman (GD) and VX exposure within 20 min, respectively.
View Article and Find Full Text PDFRicin is a highly toxic protein toxin that poses a potential bioterrorism threat due to its potency and widespread availability. However, the accurate quantification of ricin through absolute mass spectrometry (MS) using a protein standard absolute quantification (PSAQ) strategy is not widely practiced. This limitation primarily arises from the presence of interchain disulfide bonds, which hinder the production of full-length isotope-labeled ricin as an internal standard (IS) in vitro.
View Article and Find Full Text PDFOrganophosphorus nerve agent (OPNA) adducts to butyrylcholinesterase (BChE) can be applied to confirm exposure in humans. A sensitive method for generic detection of G- and V-series OPNA adducts to BChE in plasma was developed by combining an improved procainamide-gel separation (PGS) and pepsin digestion protocol with ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Residual matrix interferences from prior PGS purification of OPNA-BChE adducts from plasma were found to be a critical cause of significantly reduced UHPLC-MS/MS detection sensitivity.
View Article and Find Full Text PDFBackground: As a peptide originally discovered from by mass spectrometry and cDNA sequencing, Ac6.4 contains 25 amino acid residues and three disulfide bridges. Our previous study found that this peptide possesses 80% similarity to MVIIA by BLAST and that MVIIA is a potent and selective blocker of N-type voltage-sensitive calcium channels in neurons.
View Article and Find Full Text PDFSulfur mustard (HD) is a highly toxic vesicant and is prohibited by the Organisation for the Prohibition of Chemical Weapons (OPCW). HD can modify human serum albumin (HSA) to generate hydroxyethylthioethyl (HETE) adducts, which could be utilized as biomarkers for verifying HD exposure in forensic analysis. Here, five amino acid adducts generated from pronase digestion of HD-exposed human serum albumin (HD-HSA) in plasma were selected as biomarkers to retrospectively detect HD exposure.
View Article and Find Full Text PDFA major challenge for the unequivocal verification of alleged exposure to sulfur mustard (HD) lies in identifying its multiple modifications on endogenous proteins and utilizing these modified proteins to achieve accurate, sensitive, and rapid detection for retrospective analysis of HD exposure. As the most abundant protein in human plasma, human serum albumin (HSA) can react with many xenobiotics, such as HD, to protect the body from damage. The HSA adducts induced by HD have been used as biomarkers for the verification of HD exposure.
View Article and Find Full Text PDFThe detection of Chemical Weapon Convention (CWC)-related amine compounds including the precursors or degradation products of V-type organophosphorus nerve agent, nitrogen mustard and 3-quinuclidinyl benzilate is an important aspect for verifying their intact chemical warfare agents. This work focuses on the development of a novel formulation for the simultaneous solvent extraction of eleven CWC-related amine compounds, from the four-type soil matrices including environmental standard soil, sand, clay, and loam. Extracts were well separated on the hydrophilic interaction liquid chromatography (HILIC) and then detected by MS/MS multiple reaction monitoring mode.
View Article and Find Full Text PDFOrganophosphorus nerve agents (OPNAs) covalently bind to tyrosine 411 of human serum albumin (HSA) and the formed adducts are stable biomarkers of OPNA exposure. The detection of these adducts has been limited to mass spectrometry techniques combined with protein digestion. Here, we developed indirect competitive ELISA (icELISA) methods to verify OPNA exposure by the detection of OPNA-phosphonylated adducts at tyrosine 411 residue (OPNA-HSA adducts), in which monoclonal antibodies (mAbs) against phosphonylation sites at tyrosine 411 were introduced.
View Article and Find Full Text PDFType Ⅱ ribosome-inactivating proteins (RIPs) are an important class of protein toxins that consist of A and B chains linked by an interchain disulfide bond. The B-chain with lectin-like activity is responsible for binding to the galactose-containing receptors on eukaryotic cell surfaces, which is essential for A-chain internalization by endocytosis. The A-chain has -glycosidase activity that irreversibly depurinates a specific adenine from 28S ribosomal RNA (28S rRNA) and terminates protein synthesis.
View Article and Find Full Text PDFThe high toxic abrin from the plant is a type II ribosome-inactivating protein toxin with a human lethal dose of 0.1-1.0 µg/kg body weight.
View Article and Find Full Text PDFSulfur mustard (SM) is a blister chemical warfare agent with severe cytotoxicity and genotoxicity. It can extensively alkylate important macromolecules in organisms, such as proteins, DNA, and lipids, and produce a series of metabolites, among which the characteristic ones can be used as biomarkers. The exact toxicological mechanisms of SM remain unclear but mainly involve the DNA lesions induced by alkylation and oxidative stress caused by glutathione depletion.
View Article and Find Full Text PDFThe toxic protein of ricin has drawn wide attention in recent years as a potential bioterrorism agent due to its high toxicity and wide availability. For the verification of the potential anti-terrorism activities, it is urgent for the quantification of ricin in food-related matrices. Here, a novel strategy of trypsin/Glu-C tandem digestion was introduced for quantitative detection of ricin marker peptides in several beverage matrices using isotope-labeled internal standard (IS)-mass spectrometry.
View Article and Find Full Text PDFRicin is a type II ribosome-inactivating protein toxin consisting of A and B chains linked by one interchain disulfide bond. Because of its high toxicity depending on both chains together, confirming the presence of both A and B chains of intact ricin is required during the investigation of the illegal production and application. Here, we report a novel and sensitive acetonitrile (ACN)-assisted trypsin digestion method for unambiguous identification of intact ricin by simultaneous detection of its marker peptides from A and B chains.
View Article and Find Full Text PDFOrganophosphorus nerve agents inhibit the cholinesterase activity by phosphylation of the active site serine. The resulting phosphylated cholinesterase and adducts on human serum albumin (HSA) are appropriate biomarkers for nerve agents exposure. Several methods have been developed for the detection of nerve agents, including fluoride reactivation or alkaline cleavage.
View Article and Find Full Text PDFBoth ricin and (RCA120), belonging to the type II ribosome-inactivating proteins (RIPs-Ⅱ), are derived from the seeds of the castor bean plant. They share very similar amino acid sequences, but ricin is much more toxic than RCA120. It is urgently necessary to distinguish ricin and RCA120 in response to public safety.
View Article and Find Full Text PDFSulfur mustard (HD) reacts with human serum albumin (HSA) at Cys and produces a long-term biomarker of HD exposure. Here, we present a novel, sensitive, and convenient method for quantification of HD exposure by detection of HD-HSA adducts using pronase digestion, benzyl chloroformate (Cbz-Cl) derivatization, and ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). The HSA in HD-exposed plasma in vitro was precipitated with acetone and digested (2 h, 50 °C) with pronase to form the alkylated dipeptide, S-hydroxyethylthioethyl-CysPro (HETE-CP).
View Article and Find Full Text PDFThe experimental study on the electrical conductivities of schists with various contents of alkali ions ( = K₂O + Na₂O = 3.94, 5.17, and 5.
View Article and Find Full Text PDFThe activation process of the B(OH)-activated HO solution and its performance toward toxic industrial chemicals (TICs) and chemical warfare agents (CWAs) were investigated to find an efficient way to destroy TICs and CWAs. B NMR analysis proved that B(OH) reacted rapidly with basic HO to produce peroxoborates ([B(OH)(OOH)]), and the proportional contents were closely related to the pH and temperature. O and ·O were generated, and their production increased exponentially with pH.
View Article and Find Full Text PDFFour HD urinary metabolites including hydrolysis metabolite thiodiglycol (TDG), glutathione-derived metabolite 1,1'-sulfonylbis[2-S-(N-acetylcysteinyl)ethane] (SBSNAE), as well as the β-lyase metabolites 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] (SBMSE) and 1-methylsulfinyl-2-[2-(methylthio) ethylsulfonyl]ethane (MSMTESE) are considered as important biomarkers for short-term retrospective detection of HD exposure. In this study, a single method for simultaneous quantification of the four HD metabolites in urine samples was developed using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The four urinary metabolites were simultaneously extracted from urinary samples using a solid phase extraction (SPE) method with high extraction recoveries for all four metabolites varied in the range of 71.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
November 2016
This work describes a novel and sensitive non-isotope dilution method for simultaneous quantification of organophosphorus nerve agents (OPNAs) soman (GD) and VX adducts to butyrylcholinesterase (BChE), their aged methylphosphonic acid (MeP) adduct and unadducted BChE in plasma exposed to OPNA. OPNA-BChE adducts were isolated with an off-column procainamide-gel separation (PGS) from plasma, and then digested with pepsin into specific adducted FGESAGAAS nonapeptide (NP) biomarkers. The resulting NPs were detected by UHPLC-MS/MS MRM.
View Article and Find Full Text PDFMAIN CONCLUSION : Large-scale comparative phosphoprotein analysis in maize seedlings reveals a complicated molecular regulation mechanism at the phosphoproteomic level during de-etiolation. In the present study we report a phosphoproteomic study conducted on Zea mays etiolated leaves harvested at three time points during greening (etiolated seedlings and seedlings exposed to light for 6 or 12 h). We identified a total of 2483 phosphopeptides containing 2389 unambiguous phosphosites from 1339 proteins.
View Article and Find Full Text PDF