This study aimed to establish a predictive model to identify children with hematologic malignancy at high risk for delayed clearance of high-dose methotrexate (HD-MTX) based on machine learning. A total of 205 patients were recruited. Five variables (hematocrit, risk classification, dose, SLC19A1 rs2838958, sex) and three variables (SLC19A1 rs2838958, sex, dose) were statistically significant in univariable analysis and, separately, multivariate logistic regression.
View Article and Find Full Text PDFMethotrexate (MTX), an antimetabolite for the treatment of leukemia, could cause neutropenia and subsequently fever, which might lead to treatment delay and affect prognosis. Here, we aimed to predict neutropenia and fever related to high-dose MTX using artificial intelligence. This study included 139 pediatric patients newly diagnosed with standard- or intermediate risk B-cell acute lymphoblastic leukemia.
View Article and Find Full Text PDFThe present study aimed to produce and pathophysiologically evaluate the metallothionein (MT) fusion protein. A recombinant plasmid containing DNA segment coding the pET-glutathione transferase (GST)-small ubiquitin-related modifier (SUMO)-MT fusion protein was inserted into Escherichia coli for expression. The expression level of the fusion protein was very high, reaching to 38.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2007
Endostatin, a 20-kDa C-terminal fragment derived from type XVIII collagen, is a potent angiogenesis inhibitor and an antitumor factor. To improve the production of recombinant human endostatin on increasing demand in clinical practice, we constructed an artificial gene encoding its mature peptide sequence in human collagen XVIII. The synthetic gene consisted of 20 codons in preference in methylotropic yeast-Pichia pastoris and was cloned into expression vector pPICZalphaA; and the recombinant protein was expressed in P.
View Article and Find Full Text PDFHuman epidermal growth factor (hEGF) can stimulate the division of various cell types and has potential clinical applications. However, the high expression of active hEGF in Escherichia coli has not been successful, as the protein contains three intra-molecular disulfide bonds that are difficult to form correctly in the bacterial intracellular environment. To solve this problem, we fused the hEGF gene with a small ubiquitin-related modifier gene (SUMO) by synthesizing an artificial SUMO-hEGF fusion gene that was highly expressed in Origami (DE3) strain.
View Article and Find Full Text PDF