Integrating plant proteins into meat products offers a sustainable way to reduce the environmental impact of meat consumption while satisfying the growing flexitarian population. This study explored the effects of textured vegetable proteins (TVPs) on the physico-chemical attributes and flavour profile of hybrid salamis using 4D label-free proteomics. Results showed that hybrid salamis had lower pH, reduced water activity and increased weight loss compared with traditional salamis, along with greater hardness and a slightly rough, porous texture with a filamentous structure.
View Article and Find Full Text PDFPlant polyphenols with a catechol structure can form covalent adducts with meat proteins, which affects the quality and processing of meat products. However, there is a lack of fast and effective methods of characterizing these adducts and understanding their mechanisms. This study aimed to investigate the covalent interaction between myofibrillar protein (MP) and caffeic acid (CA), a plant polyphenol with a catechol structure, using molecular probe technology.
View Article and Find Full Text PDFInconsistent efficiency of cell production caused by cellular quality variations has become a significant problem in the cultured meat industry. In our study, morphological information on passages 5-9 of porcine muscle stem cells (pMuSCs) from three lots was analyzed and used as input data in prediction models. Cell proliferation and differentiation potencies were measured by cell growth rate and average stained area of the myosin heavy chain.
View Article and Find Full Text PDFThis study aimed to use edible scaffolds as a platform for animal stem cell expansion, thus constructing block-shaped cell culture meat. The tea polyphenols (TP)-coated 3D scaffolds were constructed of sodium alginate (SA) and gelatin (Gel) with good biocompatibility and mechanical support. Initially, the physicochemical properties and mechanical properties of SA-Gel-TP scaffolds were measured, and the biocompatibility of the scaffolds was evaluated by C2C12 cells.
View Article and Find Full Text PDFPorous scaffolds for cell cultured meat are currently limited in the food-grade material requirements, the cell adhesion, proliferation, and differentiation capacities, and the ignored appearance design. We proposed programmable scaffolds specially tailored for cell cultured meat. The scaffold with aligned porous structures was fabricated with the ice-templated directional freeze-drying of the food-grade collagen hydrogel.
View Article and Find Full Text PDFIn this study, the effects of covalent interactions between myofibrillar proteins (MP) and caffeic acid (CA) were investigated. Protein-phenol adducts were identified by biotinylated caffeic acid (BioC) used as a substitution of CA. The total sulfhydryls and free amines content were decreased (p < 0.
View Article and Find Full Text PDFCultured meat is rapidly developing as an emerging meat production technology. Adipose tissue plays an essential role in the flavor of meat products. In this study, cultured fat was produced by cultured adipose-derived stem cells (ADSCs) based on collagen in vitro, with a 3D model.
View Article and Find Full Text PDFOxidation is one of the most common causes of the deterioration of meat and meat products. At the same time, synthetic antioxidants are becoming less accepted by consumers due to the potential health hazards they might cause. Therefore, a new trend to substitute these synthetic antioxidants with natural antioxidants has emerged.
View Article and Find Full Text PDFCultured meat is an emergent technology that cultivates cells in three-dimensional scaffolds to generate tissue for consumption. Fat makes an important contribution to the flavor and texture of traditional meat, but there are few reports on cultured fat. Here, we demonstrated the construction of cultured fat by inoculating porcine adipose-derived mesenchymal stem cell (ADSC) on peanut wire-drawing protein (PWP) scaffolds.
View Article and Find Full Text PDFStemness decline of muscle stem cells (MuSCs) is a significant problem in cultured meat processing. In the present study, three flavonoids (quercetin, icariin, and 3,2'-dihydroxyflavone) with multi concentrations were evaluated to promote the proliferation and differentiation of porcine muscle stem cells. In the proliferation phase, 3,2'-dihydroxyflavone (10 μM) significantly amplified the cells by 34% and up-regulated the expression of paired box transcription factor 7 (PAX7) by 60%, which was higher than quercetin (75 nM) and icariin (7.
View Article and Find Full Text PDFWhile the research on improving the meat quality of cultured meat is in full swing, few studies have focused on the effect of smooth muscle cells (SMCs) on the meat quality of cultured meat. Therefore, this study aimed at building a cultured meat model containing smooth muscle cells, and further evaluating the effect of smooth muscle cells on the quality of cultured meat, so as to reveal the contribution of smooth muscle cells in the production of cultured meat. In this study, we isolated high purity of smooth muscle cells from vascular tissues.
View Article and Find Full Text PDFMuscle stem cells (MuSCs) isolated ex vivo are essential original cells to produce cultured meat. Currently, one of the main obstacles for cultured meat production derives from the limited capacity of large-scale amplification of MuSCs, especially under high-density culture condition. Here, we show that at higher cell densities, proliferation and differentiation capacities of porcine MuSCs are impaired.
View Article and Find Full Text PDFAmphenicols are widely used to prevent and treat animal diseases. However, amphenicol residues accumulate in livestock and poultry and harm consumers. We hypothesized that one can combine solid-phase extraction (SPE) with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to simultaneously determine amphenicols and metabolites in pork, beef, lamb, chicken, and their products and meet government regulations for maximum residue limits.
View Article and Find Full Text PDFHam fermentation relies on environmental and indigenous microorganisms forming a rich microbiome, which is pivotal to taste and flavor formation. Previous studies have focused on the appearance of differences of microorganisms and metabolites, this study aims to establish the relationship between microorganisms and metabolites over a period of two years in the fermentation of hams from Jinghua (JH2), Xuanwei (XW2), Rugao (RG2), Iberian (IB2) and Parma (PA2). We profiled bacterial communities by sequencing the V3-V4 region of the 16S rRNA genes and metabolites were analyzed using LC-Q-TOF-MS.
View Article and Find Full Text PDFLead-zinc tailings are generated during the mining process which is considered as hazardous solid waste due to its high heavy metal content and leachability in the natural state. At present, the most effective technology for disposing heavy metals in solid wastes is the solidification/stabilization (S/S) technique. In terms of S/S technology, chemical stabilization is one of the most potential and practical method.
View Article and Find Full Text PDFTo better understand the contribution of myosin light chain (MLC) isoforms to sensory defects in Jinhua ham, dipeptidyl peptidase (DPP) activities, peptide fragments, cleavage sites and the potential of DPP to develop sensory defects of dry-cured ham were evaluated and discussed in normal and defective hams. Higher residual activities of DPP I were found in defective ham compared with normal ham; approximate 3-fold peptide fragments were identified in defective ham than in normal ham. These regions of positions 11-35 and 116-141 in MLC 1, 13-53 and 139-156 in MLC 2, and 18-50 in MLC 3 contributed to the intense generation of peptide fragments in defective ham.
View Article and Find Full Text PDFTo obtain better understanding of the formation mechanisms of bitterness and adhesiveness, protease activities, proteolysis index and protein degradation were investigated among raw, normal and defective hams. Normal and defective hams both showed a decrease in cathepsin B and B + L activities compared with raw ham, while higher residual activities were observed in defective ham. Approximate 1.
View Article and Find Full Text PDFTriple TOF MS/MS was used to identify adducts between rosmarinic acid (RosA)-derived quinones and meat proteins in a gel model under oxidative stress. Seventy-five RosA-modified peptides responded to 67 proteins with adduction of RosA. RosA conjugated with different amino acids in proteins, and His, Arg, and Lys adducts with RosA were identified for the first time in meat.
View Article and Find Full Text PDFMol Cell Endocrinol
October 2015
Chemerin is an adipocyte-secreted adipokine that regulates the differentiation and metabolism of adipose through auto-/paracrine signaling. Its function in the differentiation of multipotent myoblast cells has thus far received little attention. In this study, C2C12 myoblast cells were cultured in the medium with Chemerin, and the differentiation potential of C2C12 myoblasts was analyzed.
View Article and Find Full Text PDFLTQ Orbitrap MS/MS was used to identify the adducts between quinones derived from rosmarinic acid (RosA) and thiol compounds, including cysteine (Cys), glutathione (GSH), and peptides digested from myosin. Two adducts of quinone-RosA/Cys and quinone-RosA/2Cys, one quinone-RosA/GSH adduct, and three quinone-RosA/peptide adducts were identified by extracted ion and MS(2) fragment ion chromatograms. By using MALDI-TOF/TOF MS, the adduction reaction between RosA and myosin in myofibrillar protein isolates was determined, demonstrating that the accurate reaction site was at Cys949 of myosin.
View Article and Find Full Text PDF