In response to environmental changes, plant roots undergo two major differentiations: the formation of the Casparian strip and the suberin lamella, both of them are widely recognized as an apoplastic diffusion barrier for nutrient and water exchange between the soil and the root vascular bundle. Suberin is a complex biopolyester composed of glycerol esters and phenolic compounds deposited in the cell walls of specific tissues such as endodermis, exodermis, periderm, seed coat and other marginal tissues. Recently, significant progress has been made due to the development of biochemical and genetic techniques.
View Article and Find Full Text PDFThe more axillary growth () gene family is a group of key genes involved in the synthesis and signal transduction of strigolactones (SLs) in plants. Although genes play vital roles in plant growth and development, characterization of the gene family has been limited in solanaceous crops, especially in tobacco. In this study, 74 members of the family were identified in representative crops and classified into four groups.
View Article and Find Full Text PDFObjective: To probe into the clinical efficacy of tripterygium wilfordii glycoside (TWGs) tablets combined with acitretin capsules in the treatment of patients with moderate to severe plaque psoriasis (MSPP).
Methods: Thirty-six patients with MSPP were collected and divided into three groups, namely, group A ( = 12, TWG tablets + acitretin capsules), group B ( = 12, compound glycyrrhizin capsules + acitretin capsules), and group C ( = 12, acitretin capsules). The general data of the patients was recorded.
Endoreduplication is prevalent during plant growth and development, and is often correlated with large cell and organ size. Despite its prevalence, the transcriptional regulatory mechanisms underlying the transition from mitotic cell division to endoreduplication remain elusive. Here, we characterize ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR 4 (ERF4) as a positive regulator of endoreduplication through its function as a transcriptional repressor.
View Article and Find Full Text PDFBackground: GDSL esterases/lipases are a large protein subfamily defined by the distinct GDSL motif, and play important roles in plant development and stress responses. However, few studies have reported on the role of GDSLs in the growth and development of axillary buds. This work aims to identify the GDSL family members in tobacco and explore whether the NtGDSL gene contributes to development of the axillary bud in tobacco.
View Article and Find Full Text PDFThe control of axillary bud development after removing the terminal buds (topping) of plants is a research hotspot, and the control of gene expression, like switching on and off, allows us to further study biological traits of interest, such as plant branching and fertility. In this study, a toxin gene control system for plants based on dexamethasone (DEX) induction was constructed, and the positive transgenic tobacco exhibited growth retardation in the application area (axillary bud). The expression level of the lethal Diphtheria toxin A (DTA) gene under different DEX concentrations at different application days was analyzed.
View Article and Find Full Text PDFBackground: The growth of axillary buds determines the shoot branching and morphology of plants, and its initiation and development are regulated by a series of hormonal signals, such as cytokinin. Arabidopsis response regulators (ARRs) can regulate the growth and development, disease resistance and stress resistance of plants by participating in cytokinin signaling.
Objective: To explore the distribution and expression pattern of ARR members in tobacco.
Targeted gene expression in plants allows us to further study biological traits of interest, such as reproductive and developmental processes. Here, the tobacco TA29 anther-specific promoter was used to direct the expression of the ricin enzymatic subunit A (RTA) in transgenic tobacco plants, phenotypic analysis of the resulting positive transgenic tobacco (Nicotiana tabacum L.) plants demonstrated that RTA expression led to a reduction in pistil length and shriveling of anthers, as well as the grayish-brown color of anthers, the reduced pollen viability and male sterility.
View Article and Find Full Text PDFThe functional homologs WS1A and WS1B, identified by map-based cloning, control the burley character by affecting chloroplast development in tobacco, contributing to gene isolation and genetic improvement in polyploid crops. Burley represents a special type of tobacco (Nicotiana tabacum L.) cultivar that is characterized by a white stem with a high degree of chlorophyll deficiency.
View Article and Find Full Text PDFStomatal movements are critical in regulating gas exchange for photosynthesis and water balance between plant tissues and the atmosphere. The plant hormone abscisic acid (ABA) plays key roles in regulating stomatal closure under various abiotic stresses. In this study, we revealed a novel role of BAK1 in guard cell ABA signaling.
View Article and Find Full Text PDFIn the present study, we isolated a methionine sulfoxide reductase B gene, termed SlMSRB1, from tomato (Solanum lycopersicum). In the organ-specific analysis, high expression levels of SlMSRB1 were detected in red mature fruits, leaves and flowers while low transcriptional levels of SlMSRB1 mRNA were observed in stems and roots. In the green fluorescence analysis of SlMSRB1- overexpressed Arabidopsis, signal corresponding to SlMSRB1 was merely detected in chloroplast, suggesting that tomato MSRB1 is a chloroplastial localization protein.
View Article and Find Full Text PDFE4, which is a fruit-ripening gene that is strongly induced by ethylene, has been reported to be a member of the methionine sulfoxide reductase A (MSRA) gene. In the present study, we determined for the first time the enzymatic activity and delineated the catalytic mechanism of the E4 protein via site-directed mutagenesis. The disulfide intermolecular cross-linking, kinetics parameter, thiol content titration analysis of wild-type and mutated E4 proteins revealed that the cysteine at position 37 (Cys-37) was the key catalytic residue, and Cys-194, but not Cys-180 served as the first recycling Cys in the thioredoxin (Trx)-dependent regeneration system.
View Article and Find Full Text PDFIn this study, four methionine sulfoxide reductase A (MSRA) genes, SlMSRA2-5, were identified in Micro-Tom (Solanum lycopersicum cv.'Micro-Tom') based on the tomato database. Exon/intron distribution assays indicated that the gene sequence of SlMSRA2, SlMSRA3, and SlMSRA4 contained two exons and one intron in the tomato genome, while the coding sequence of SlMSRA5 was interrupted by three introns.
View Article and Find Full Text PDFMethionine sulfoxide reductase A (MSRA) is a ubiquitous enzyme that has been demonstrated to reduce the S enantiomer of methionine sulfoxide (MetSO) to methionine (Met) and can protect cells against oxidative damage. In this study, we isolated a novel MSRA (SlMSRA2) from Micro-Tom (Solanum lycopersicum L. cv.
View Article and Find Full Text PDFTo investigate the pathways of oxidoreductases in plants, 2 key components in thioredox systems i.e. thioredoxin h (Trx h) and NADPH-dependent thioredoxin reductase (NTR) genes were first isolated from tomatoes (Solanum lycopersicum).
View Article and Find Full Text PDF