Activatable multifunctional nanoparticles present considerable advantages in cancer treatment by integrating both diagnostic and therapeutic functionalities into a single platform. These nanoparticles can be precisely engineered to selectively target cancer cells, thereby reducing the risk of damage to healthy tissues. Once localized at the target site, they can be activated by external stimuli such as light, pH changes, or specific enzymes, enabling precise control over the release of therapeutic agents or the initiation of therapeutic effects.
View Article and Find Full Text PDFHigh-performance and durable anion exchange membranes (AEMs) are critical for realizing economical green hydrogen production through alkaline water electrolysis (AWE) or AEM water electrosysis (AEMWE). However, existing AEMs require sophisticated fabrication protocols and exhibit unsatisfactory electrochemical performance and long-term durability. Here we report an AEM fabricated via a one-pot, in situ interfacial Menshutkin reaction, which assembles a highly cross-linked polymer containing high-density quaternary ammoniums and nanovoids inside a reinforcing porous support.
View Article and Find Full Text PDFAnion exchange membrane water electrolysis (AEMWE) offers a sustainable path for hydrogen production with advantages such as high current density, dynamic responsiveness, and low-cost electrocatalysts. However, the development of efficient and durable oxygen evolution reaction (OER) electrocatalysts under operating conditions is crucial for achieving the AEMWE. This study systematically investigated Fe-Co-Ni ternary amorphous electrocatalysts for the OER in AEMWE through a comprehensive material library system comprising 21 composition series.
View Article and Find Full Text PDFDeveloping countries struggle with water quality management owing to poor infrastructure, limited expertise, and financial constraints. Traditional water testing, relying on periodic site visits and manual sampling, is impractical for continuous wide-area monitoring and fails to detect sudden heavy metal contamination. To address this, plant-inspired robots capable of fully autonomous water quality monitoring are proposed.
View Article and Find Full Text PDFJ Chem Theory Comput
August 2024
With the recent introduction of deep learning techniques into the prediction of biomolecular structures, structure prediction performance has significantly improved, and the potential for biomedical applications has increased considerably. The prediction of protein-ligand complex structures, applicable to the atomistic understanding of biomolecular functions and the effective design of drug molecules, has also improved with the introduction of deep learning. In this paper, it is demonstrated that docking performance can be greatly enhanced by training an energy function that encapsulates physical effects using deep learning within the framework of the traditional protein-ligand docking method.
View Article and Find Full Text PDFAnaerobic digestion of organic waste into methane and carbon dioxide (biogas) is carried out by complex microbial communities. Here, we use full-length 16S rRNA gene sequencing of 285 full-scale anaerobic digesters (ADs) to expand our knowledge about diversity and function of the bacteria and archaea in ADs worldwide. The sequences are processed into full-length 16S rRNA amplicon sequence variants (FL-ASVs) and are used to expand the MiDAS 4 database for bacteria and archaea in wastewater treatment systems, creating MiDAS 5.
View Article and Find Full Text PDFBackground: Wastewater treatment plants contribute approximately 6% of anthropogenic methane emissions. Methanotrophs, capable of converting methane into polyhydroxybutyrate (PHB), offer a promising solution for utilizing methane as a carbon source, using activated sludge as a seed culture for PHB production. However, maintaining and enriching PHB-accumulating methanotrophic communities poses challenges.
View Article and Find Full Text PDFThe utilization of gold nanoparticles (AuNPs) has garnered significant attention in recent times, particularly in the field of biomedical research. The utilization of AuNPs in chemical synthesis procedures raises apprehensions regarding their potential toxicity in living organisms, which is inconsistent with their purported eco-friendly and cost-effective aspects. In this investigation, AuNPs were synthesized the green synthesis approach utilizing Jeju Hallabong peel extract (HPE), a typical fruit variety indigenous to South Korea.
View Article and Find Full Text PDFThe efficient evolution of gaseous hydrogen and oxygen from water is required to realize sustainable energy conversion systems. To address the sluggish kinetics of the multielectron transfer reaction, bifunctional catalyst materials for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) should be developed. Herein, a tailored combination of atomically minimized iridium catalysts and highly conductive black WO nanofiber supports are developed for the bifunctional electrolyzer system.
View Article and Find Full Text PDFACS Appl Bio Mater
May 2024
Digital PCR (dPCR) has become indispensable in nucleic acid (NA) detection across various fields, including viral diagnostics and mutant detection. However, misclassification of partitions in dPCR can significantly impact accuracy. Despite existing methods to minimize misclassification bias, accurate classification remains elusive, especially for nonamplified target partitions.
View Article and Find Full Text PDFWe present an innovative solvent-free micromolding technique for rapidly fabricating complex polymer microparticles with three-dimensional (3D) shapes utilizing a surface tension-induced dipping process. Our fabrication process involves loading a photocurable solution into micromolds through mold dipping. The loaded solution, induced by surface tension, undergoes spatial deformation upon mold removal caused by surface forces, ultimately acquiring an anisotropic shape before photopolymerization.
View Article and Find Full Text PDFWith increasing coffee consumption worldwide, the efficient and sustainable management of spent coffee grounds (SCG) has become increasingly challenging. This study investigated the anaerobic co-digestion of small amounts of SCG with food waste (FW) at increasing co-feeding ratios of 1:100-1:10 (volatile solids basis) to assess the possibility of SCG treatment using the spare capacity of existing anaerobic digesters. Co-feeding SCG increased methane production compared to FW mono-digestion in the tested range of co-feeding ratios without compromising process stability.
View Article and Find Full Text PDFBioresour Technol
February 2024
This study explored the coupling of electrochemical nutrient recovery from human urine with biogas upgrading. Ammonia nitrogen-rich (≥300 mM) and alkaline (≥pH 9) hydrolyzed urine (HU) is a promising alternative CO solvent. Spent urine after biogas upgrading (SU), with neutralized pH and increased conductivity resulting from CO absorption, is advantageous over HU for recovering total ammonia nitrogen (TAN) through electro-concentration.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Staphylococcus aureus is a major pathogen that causes infections and life-threatening diseases. Although antibiotics, such as methicillin, have been used, methicillin-resistant S. aureus (MRSA) causes high morbidity and mortality rates, and conventional detection methods are difficult to be used because of time-consuming process.
View Article and Find Full Text PDFMany existing synthetic hydrogels are inappropriate for repetitive motions because of large hysteresis, and their mechanical properties in warm and saline physiological conditions remain understudied. In this study, a stretch-rate-independent, hysteresis-free, elastic, and tough nanocomposite hydrogel that can maintain its mechanical properties in phosphate-buffered saline of 37 °C similar to warm and saline conditions of the human body is developed. The strength, stiffness, and toughness of the hydrogel are simultaneously reinforced by biomimetic silica nanoparticles with a surface of embedded circular polyamine chains.
View Article and Find Full Text PDFThis study comparatively investigated the exoelectrogenic utilization and hydrogen conversion of major dark fermentation products (acetate, propionate, butyrate, lactate, and ethanol) from organic wastes in dual-chamber microbial electrolysis cells (MECs) alongside their mixture as a simulated dark fermentation effluent (DFE). Acetate-fed MECs showed the highest hydrogen yield (1,465 mL/g chemical oxygen demand), near the theoretical maximum yield, with the highest coulombic efficiency (105%) and maximum current density (7.9 A/m), followed by lactate-fed, propionate-fed, butyrate-fed, mixture-fed, and ethanol-fed MECs.
View Article and Find Full Text PDFThis work demonstrates a simple and scalable methodology for the binder-free direct growth of Mo-doped NiFe-layered double hydroxides on a nickel substrate via an electrodeposition route at room temperature. A three-dimensional (3D) nanosheet array morphology of the electrocatalyst provides immense electrochemical surface area as well as abundant catalytically active sites. Mo incorporation in the NiFe-LDH plays a crucial role in regulating the catalytic activity of oxygen evolution reaction (OER).
View Article and Find Full Text PDFElectric syntrophy between fatty acid oxidizers and methanogens through direct interspecies electron transfer (DIET) is essential for balancing acidogenesis and methanogenesis in anaerobic digestion. Promoting DIET using electrically conductive additives proved effective in enhancing methanogenesis; however, its possibility to affect other microbial redox reactions in methanogenic systems has been little studied. This study provides the first confirmation of the electro-syntrophic coupling of sulfide oxidation to S with CO-reducing methanogenesis in sulfur-rich methanogenic cultures supplemented with conductive magnetite (100-700-nm particle size).
View Article and Find Full Text PDFFermentation effluents from organic wastes contain simple organic acids and ethanol, which are good electron sources for exoelectrogenic bacteria, and hence are considered a promising substrate for hydrogen production in microbial electrolysis cells (MECs). These fermentation products have different mechanisms and thermodynamics for their anaerobic oxidation, and therefore the composition of fermentation effluent significantly influences MEC performance. This study examined the microbial electrolysis of a synthetic fermentation effluent (containing acetate, propionate, butyrate, lactate, and ethanol) in two-chamber MECs fitted with either a proton exchange membrane (PEM) or an anion exchange membrane (AEM), with a focus on the utilization preference between the electron sources present in the effluent.
View Article and Find Full Text PDFThis study examined continuous mixed-culture microalgae cultivation for nutrient removal from anaerobic digestion (AD) effluents in photobioreactors, while altering the NH-N loading rate (NLR) by adjusting either the hydraulic retention time (HRT) (reactor set RH) or the influent NH-N concentration (reactor set RS). Both RH and RS demonstrated efficient nutrient removal and microalgae cultivation at NLRs of 4-10 mg NH-N/L∙d, reaching peak performance at 10 mg NH-N/L∙d. Within this range, RH obtained greater biomass yield and productivity, while RS maintained higher microalgal concentrations.
View Article and Find Full Text PDFWe report copper(II) arsenite-encapsulated ferritin nanoparticles (CuAS-FNs) as oxidative stress-amplifying anticancer agents. The CuAS-FNs were fabricated through CuAS mineralization in the cavity of the FNs. The formation of crystalline CuAS complex minerals in the FNs was systematically identified using various analytical tools, including X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM)-associated energy-dispersive X-ray spectroscopy (TEM-EDS).
View Article and Find Full Text PDFAlkaline water electrolysis (AWE) is considered a promising technology for green hydrogen (H ) production. Conventional diaphragm-type porous membranes have a high risk of explosion owing to their high gas crossover, while nonporous anion exchange membranes lack mechanical and thermochemical stability, limiting their practical application. Herein, a thin film composite (TFC) membrane is proposed as a new category of AWE membranes.
View Article and Find Full Text PDFNitroreductase (NTR) has the ability to activate nitro group-containing prodrugs and decompose explosives; thus, the evaluation of NTR activity is specifically important in pharmaceutical and environmental areas. Numerous studies have verified effective fluorescent methods to detect and image NTR activity; however, near-infrared (NIR) fluorescence probes for biological applications are lacking. Thus, in this study, we synthesized novel NIR probes () by introducing a nitro group to the hemicyanine skeleton to obtain fluorescence images of NTR activity.
View Article and Find Full Text PDF