Publications by authors named "Chang-bai Liu"

Background & Aims: Hepatic fibrosis is characterized by hepatic stellate cell (HSC) activation and transdifferentiation-mediated extracellular matrix (ECM) deposition, which both contribute to cirrhosis. However, no antifibrotic regimen is available in the clinic. microRNA-23b/27b/24-1 cluster inhibition of transforming growth factor-β (TGF-β) signaling during hepatic development prompted us to explore whether this cluster inhibits HSC activation and hepatic fibrosis.

View Article and Find Full Text PDF

The aim of the present study was to investigate whether class C1 decoy oligodeoxynucleotides (ODNs) can inhibit the expression of pro‑fibrotic genes associated with rat hepatic stellate cell (HSC) activation and hepatic fibrosis. Luciferase reporter assays were performed to test the promoter activities of transforming growth factor (TGF)‑β and its downstream target genes following transfection of decoy ODNs and plasmids into HSC‑T6 cells, and western blot assays were performed to measure the protein expression of those genes following decoy ODN transfection. Class C1 decoy ODNs were confirmed to inhibit the promoter activity of TGF‑β and its downstream target genes, such as type 1 collagen (COLI)α1, tissue inhibitor of metalloproteinases (TIMP)1 and α‑smooth muscle actin by Gaussia luciferase reporter assay, and to further downregulate the expression of TGF‑β, SMAD3, COLIα1 and TIMP1 by western blotting in activated HSC‑T6 cells.

View Article and Find Full Text PDF

Introduction: Mitochondria are promising targeting organelles for anticancer strategies; however, mitochondria are difficult for antineoplastic drugs to recognize and bind. Mitochondria-penetrating peptides (MPPs) are unique tools to gain access to the cell interior and deliver a bioactive cargo into mitochondria. MPPs have combined or delivered a variety of antitumor cargoes and obviously inhibited the tumor growth in vivo and in vitro.

View Article and Find Full Text PDF

As a key molecule involved in cell recognition, calreticulin (CRT) may be expressed on the surface of (pre-) apoptotic cells and provide the signal that is recognized by dendritic cells (DCs) or other antigen presenting cells (APCs), which results in phagocytosis. Within the APCs, tumor-associated antigens (TAAs) may be subsequently presented to T lymphocytes, which triggers a specific antitumor immune response. It has been hypothesized that CRT is able to act as the immunologic adjuvant and translocate itself and TAAs to the cell surface and induce a specific antitumor immune response.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) have a great potential for intracellular delivery of cell-impermeable biological macromolecules in clinical therapy. However, their lack of cell and tissue specificity remains the primary limitation for their clinical development as drug delivery vehicles. In this study, based on phage display and an in silico approach, we found a novel CPP-MT23 with mouse melanoma cell specificity, it can only enter B16 melanoma cancer cells and without any cytotoxicity, Moreover, MT23 showed higher penetration efficiency based on fluorescence microcopy and quantitative assay, and it has capability for mediating functional Apoptin into cells in vitro or in vivo.

View Article and Find Full Text PDF

Gremlin1, the antagonist of bone morphogenetic protein-7 and one of the target genes of transforming growth factor (TGF)-β signal pathway, plays an important role in embryonic development and its expression decreases along with aging. To explore the expression of gremlin1 in liver fibrosis and the causal link between gremlin1 and hepatic stellate cell (HSC) activation, we detected the expression of gremlin1 in mice with hepatic fibrosis induced by porcine serum using real time quantitative PCR (RT-qPCR) and immunohistochemical staining. The hepatic fibrosis mice were evaluated by the external feature of the liver, histology, hepatic function, collagen deposition, and the expression of fibrosis-related genes (genes COLIα2 and COLIVα2) in the liver.

View Article and Find Full Text PDF

Glycogen synthase kinase3 (GSK3α and GSK3β) are serine/threonine protein kinases acting on numerous substrates and involved in the regulation of various cellular functions such as their proliferation, survival, glycogen metabolism, and autophagy. Accumulating evidence indicates that the expression of GSK3α is increased mainly in androgendependent while that of GSK3β in androgenindependent prostate cancer, and that GSK3β is also involved in the regulation of the transactivation of the androgen receptor (AR) and growth of prostate cancer. Animal experiments have proved that some GSK3 inhibitors, such as lithium, can significantly suppress tumor growth in different animal models of prostate cancer.

View Article and Find Full Text PDF

The imbalance between transforming growth factor β and bone morphogenetic protein 7 signaling pathways is a critical step in promoting hepatic stellate cell activation during hepatic fibrogenesis. Gremlin1 may impair the balance. Something remains unclear about the regulatory mechanisms of gremlin1 action on hepatic stellate cell activation and hepatic fibrosis.

View Article and Find Full Text PDF

Hepatic fibrosis is a reversible process involving plenty of transcription factors and pathways. Vitamin D receptor (VDR) as a member of ligand-induced transcription factors can interact with 9-cis retinoid X receptor (RXR) and VDR-interacting repressor (VDIR) to mediate transactivation or transrepression in the absence or in the presence of VDR ligand to regulate the expression of VDR target genes. The active form of vitamin D [1α,25(OH)2D3] can downregulate the expression of type I collagen both α1 and α2 (COLIα1 and COLIα2) in hepatic stellate cells (HSC-T6) in a time-dependent fashion, which provides a new direction for hepatic fibrosis therapy.

View Article and Find Full Text PDF

Background: The excessive accumulation of extracellular matrix of hepatic fibrosis is positively correlated with tissue inhibitors of metalloproteinase 1 (TIMP1). Here we aimed to investigate whether TIMP1 may be down-regulated by Decoy ODNs strategy to capture transcriptional factor upstream TIMP1 element 1 (UTE1) and specificity protein 1(SP1).

Results: By luciferase reporter assays, we confirmed that these Decoy ODNs could influence the promoter activation of TIMP-1, α-SMA and Collagen Iα2 (COLΙα2) genes as well as the enhancer activation of TRE in HSC-T6 cells, and the combination tended to be more effective than SP1 or UTE1 Decoy ODN alone.

View Article and Find Full Text PDF

Cell-penetrating peptide (CPP) based delivery have provided immense potential for the therapeutic applications, however, most of nonhuman originated CPPs carry the risk of possible cytotoxicity and immunogenicity, thus may restricting to be used. Here, we describe a novel human-derived CPP, denoted hPP10, and hPP10 has cell-penetrating properties evaluated by CellPPD web server, as well as In-Vitro and In-Vivo analysis. In vitro studies showed that hPP10-FITC was able to penetrate into various cells including primary cultured cells, likely through an endocytosis pathway.

View Article and Find Full Text PDF

To explore a novel strategy in suppressing tumor metastasis, we took the advantage of a recent RNA activation (RNAa) theory and used small double-strand RNA molecules, termed as small activating RNAs (saRNA) that are complimentary to target gene promoter, to enhance transcription of metastasis suppressor gene. The target gene in this study is Dihydro-pyrimidinase-like 3 (DPYSL3, protein name CRMP4), which was identified as a metastatic suppressor in prostate cancers. There are two transcriptional variants of DPYSL3 gene in human genome, of which the variant 2 is the dominant transcript (DPYSL3v2, CRMP4a) but is also significantly down-regulated in primary prostate cancers.

View Article and Find Full Text PDF

Vitamin D Receptor (VDR) belongs to the nuclear receptor (NR) superfamily. Whereas the structure of the ligand binding domain (LBD) of VDR has been determined in great detail, the role of its amino acid residues in stabilizing the structure and ligand triggering conformational change is still under debate. There are 13 α-helices and one β-sheet in the VDR LBD and they form a three-layer sandwich structure stabilized by 10 residues.

View Article and Find Full Text PDF

While the structure of the DNA-binding domain (DBD) of the vitamin D receptor (VDR) has been determined in great detail, the roles of its domains and how to bind the motif of its target genes are still under debate. The VDR DBD consists of two zinc finger modules and a C-terminal extension (CTE), at the end of the C-terminal of each structure presenting α-helix. For the first zinc finger structure, N37 and S-box take part in forming a dimer with 9-cis retinoid X receptor (RXR), while V26, R50, P-box and S-box participate in binding with VDR response elements (VDRE).

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) are short, often hydrophilic peptides that can deliver many kinds of molecules into cells and that are likely to serve as a useful tool of future biotherapeutics. However, CPPs application is limited because of insufficient transduction efficiency and unpredictable cellular localization. Here, we investigated the enhancement of 1,2-benzisothiazolin-3-one (BIT) on the uptake of a synthetic fluorescent TAT and a TAT-conjugated green fluorescent protein (GFP) or pro-apoptotic peptide KLA and evaluated its toxicity in various cell lines.

View Article and Find Full Text PDF

Aim: To determine the role of Notch1 and Hes1 in regulating the activation of hepatic stellate cells (HSCs) and whether Hes1 is regulated by transforming growth factor (TGF)/bone morphogenetic protein (BMP) signaling.

Methods: Immunofluorescence staining was used to detect the expression of desmin, glial fibrillary acidic protein and the myofibroblastic marker α-smooth muscle actin (α-SMA) after freshly isolated, normal rat HSCs had been activated in culture for different numbers of days (0, 1, 3, 7 and 10 d). The expression of α-SMA, collagen1α2 (COL1α2), Notch receptors (Notch1-4), and the Notch target genes Hes1 and Hey1 were analyzed by reverse transcriptase-polymerase chain reaction.

View Article and Find Full Text PDF

Induced pluripotent stem (iPS) cells were created from mouse fibroblasts by induced expression of Yamanaka factors, Oct3/4, Sox2, Klf4, and c-Myc. This technique has quickly resulted in an exponential increase in the amount of pluripotency studies, and has provided a valuable tool in regenerative medicine. At the same time, many methodologies to generate iPS cells have been reported, and are comprised mainly of viral methods and non-viral methods.

View Article and Find Full Text PDF

The blood-brain barrier (BBB), a dynamic and complex barrier formed by endothelial cells, can impede the entry of unwanted substances - pathogens and therapeutic molecules alike - into the central nervous system (CNS) from the blood circulation. Taking into account the fact that CNS-related diseases are the largest and fastest growing unmet medical concern, many potential protein- and nucleic acid-based medicines have been developed for therapeutic purposes. However, due to their poor ability to cross the BBB and the plasma membrane, the above-mentioned bio-macromolecules have limited use in treating neurological diseases.

View Article and Find Full Text PDF

Induced pluripotent stem (iPS) cells were originally generated from mouse fibroblasts by enforced expression of Yamanaka factors (Oct3/4, Sox2, Klf4, and c-Myc). The technique was quickly reproduced with human fibroblasts or mesenchymal stem cells. Although having been showed therapeutic potential in animal models of sickle cell anemia and Parkinson's disease, iPS cells generated by viral methods do not suit all the clinical applications.

View Article and Find Full Text PDF

Cell penetrating peptides (CPPs) are promising tools for transducing presynthesized therapeutic molecules which possess low membrane permeability. The poor efficiency of cellular uptake and unexpected cellular localization are still the main obstacles to the development of drug delivery by using CPPs. In this study, we investigated the effect of a penetration enhancer, dimethylsulfoxide (DMSO), on the penetrating efficiency of a synthetic TAT peptide or the TAT fusion protein.

View Article and Find Full Text PDF

Aim: To detect the expression of the Calreticulin and HPV E2 Fusion Protein in B16, and study the effects on proliferation and apoptosis of B16 cell lines in vivo.

Methods: To construct eukaryotic fluoresce expression vector pEGFP-CRT-E2, pEGFP-CRT and pEGFP-E2. Then the recombinant plasmids were transfected into B16 cells by Lipofectamine 2000.

View Article and Find Full Text PDF