ACS Appl Mater Interfaces
December 2024
This study presents the design and characterization of a triad metal-organic framework (MOF) system composed of pyrene, porphyrin, and phenyl-C-butyric acid (PCBA) for efficient energy and electron transfer processes mimicking natural photosynthesis. The triad MOF, synthesized through a mixed-ligand approach followed by postsynthetic modification, demonstrates sequential energy transfer from pyrene to porphyrin, followed by electron transfer to the PCBA acceptor. Time-resolved photoluminescence (TRPL) spectroscopy was employed to investigate the dynamics of energy and charge transfer, revealing fast interligand energy transfer and subsequent charge separation in the MOF structure.
View Article and Find Full Text PDFMolecular transformation behavior within a mechanically interlocked system is often assisted by chemical manipulation, such as the inclusion of guest molecules, variation in the solution concentration, or swapping of solvents. We present in this report the synthesis of ruthenium metal and π-conjugated pyrene-based (2 + 2) catenated rectangles. Additionally, we discuss the structural conversion of these catenated rectangles into monorectangles through adjustments in concentration and solvent composition.
View Article and Find Full Text PDFIn this study, we report the efficient removal of organic dyes from aqueous solutions using a newly synthesized pyrene-appended Zn(II)-based metal-organic framework (MOF), ZnSiF6Pyrene MOF, with the chemical formula CHFNSiZn·4(CHCl). The MOF was synthesized through a facile method at room temperature using a dipyridylpyrene ligand and ZnSiF metal source, resulting in a highly crystalline structure with pyrene functional groups forming the framework. The synthesized MOF was characterized using various analytical techniques, including Fourier-transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD) analysis, and scanning electron microscopy (SEM).
View Article and Find Full Text PDFValidating the direct photocatalytic activity of colloidal plasmonic nanoparticles is challenging due to their limited stability and needed support materials that can often contribute to the chemical reactions. Stable gold nanoparticles (AuNPs) with tunable sizes are prepared across porous polymer particles without any chemical bonds where the resulting composite particles exhibit intense surface plasmon resonances (SPRs) in the visible region. These composite particles are then tested as photocatalysts under a broadband solar-simulated light source to examine the contribution degree of photothermal heating and SPR coming from the incorporated AuNPs in the C-C bond forming homocoupling reaction.
View Article and Find Full Text PDFOxygen evolution reaction (OER) electrocatalysts are frequently made from noble metal-based oxides like ruthenium/iridium oxides. However, because of their scarcity and high price, researchers are now focusing on creating innovative OER catalysts based on affordable transition metals that have improved electrical conductivity and accessibility to active sites. Metal-organic frameworks (MOFs), a unique class of inorganic materials with excellent physical and chemical properties, have witnessed significant progress in promising green energy systems.
View Article and Find Full Text PDFIn this study, we demonstrate an integrated synthesis strategy, which is conducted by the thermochemical process, consisting of pre- and post-activation by thermal treatment and KOH activation for the reduction of graphite oxide. A large number of interconnected pore networks with a micro/mesoporous range were constructed on a framework of graphene layers with a specific surface area of up to 1261 m g. This suggests a synergistic effect of thermally exfoliated graphene oxide (TEGO) on the removal efficiency of volatile organic compounds by generating pore texture with aromatic adsorbates such as benzene, toluene, and -xylene (denoted as BTX) from an inert gaseous stream concentration of 100 ppm.
View Article and Find Full Text PDFA zinc-based pyrene-porphyrin hybrid linear 1-D coordination polymer ZnPyrPorp with general formula [Zn(Pyr)(Porp)] (Pyr = pyrene, Porp = tetraphenylporphyrin) was synthesized using a facile one-pot solvothermal method and fully characterized using different analytical techniques. The single-crystal X-ray diffraction (SCXRD) structure exhibited an interesting morphology with zinc metal coordinated to the porphyrin center, which was further bonded to the pyridine groups of the pyrene ligand, resulting in a linear 1-D-type polymer, with repeated Pyr-ZnTPP-Pyr units. The light-harvesting properties of the ZnPyrPorp polymer were investigated.
View Article and Find Full Text PDFBecause of their high porosity, metal-organic framework (MOF) materials have attracted much attention for use in gas-sensing applications. However, problems with the processability of MOFs for use in reliable gas-sensing electronics remain unsolved. Herein, combination of the strong gas-adsorbing properties of MOF nanomaterials and organic thin-film transistor-type chemical sensors is proposed and experimentally demonstrated.
View Article and Find Full Text PDFBoron dipyrromethene, commonly known as BODIPY, based metal-organic macrocycles (MOCs) and metal-organic frameworks (MOFs) represent an interesting part of materials due to their versatile tunability of structure and functionality as well as significant physicochemical properties, thus broadening their applications in various scientific domains, especially in biomedical sciences. With increasing concern over the efficacy of cancer drugs versus quality of patient's life dilemma, scientists have been trying to fabricate novel comprehensive therapeutic strategies along with the discovery of novel safer drugs where research with BODIPY metal complexes has shown vital advancements. In this review, we have exclusively examined the articles involving studies related to light harvesting and photophysical properties of BODIPY based MOCs and MOFs, synthesized through self-assembly process, with a special focus on biomolecular interaction and its importance in anti-cancer drug research.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2022
Sonodynamic therapy, which utilizes ultrasound (US) to produce cytotoxic reactive oxygen species (ROS), can overcome the critical drawbacks of photodynamic therapy, such as limited tissue penetration depth. However, the development of sonosensitizers having superior sonodynamic effects and desirable biocompatibility remains a major challenge. In this study, nanoscale zirconium-based porphyrinic metal organic frameworks (MOFs) (PCN-222) were developed as safe and effective nanosonosensitizers.
View Article and Find Full Text PDFPesticides are chemicals widely used for agricultural industry, despite their negative impact on health and environment. Although various methods have been developed for pesticide degradation to remedy such adverse effects, conventional materials often take hours to days for complete decomposition and are difficult to recycle. Here, we demonstrate the rapid degradation of organophosphate pesticides with a Zr-based metal-organic framework (MOF), showing complete degradation within 15 min.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) represent a class of solid-state hybrid compounds consisting of multitopic organic struts and metal-based nodes that are interconnected by coordination bonds, and they are ideal for light harvesting due to their highly ordered structure. These structures can be constructed with chromophore organic ligands structures for the purpose of efficient light harvesting. Here, we prepared porphyrin-based nano-scaled MOFs (nPCN-222) with BODIPY and IBODIPY photosensitizers by incorporating BODIPY/IBODIPY into nPCN-222 (nPCN-BDP/nPCN-IBDP) and demonstrated resonance energy transfer from the donor (BODIPY/IBODIPY) to the acceptor (nPCN-222) resulting in greatly enhanced fluorescence of nPCN-222, as visually manifested by time-resolved and space-resolved fluorescence imaging of the nano-scaled MOFs.
View Article and Find Full Text PDFEffective sequestration of harmful organic pollutants from wastewater has been a persistent concern in the interest of environmental and ecological protection from pollution and hazards. Currently, common water treatment technologies such as adsorption, coagulation, and membranes are expensive and not greatly effective. A new class of organic and inorganic composite metal-organic frameworks (MOFs) has emerged as an essential class of materials for numerous applications, including photocatalytic degradation of organic pollutants.
View Article and Find Full Text PDFIn the oxidative dehydrogenation (ODH) process that converts ethylbenzene to styrene, vanadium-based catalysts, especially VO, are used in a CO atmosphere to enhance process efficiency. Here we demonstrate that the activation energy of VO can be manipulated by exposure to high pressure CO, using VO nanowires (VON). The oxidation of V to V was observed by X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFMetal-based multinuclear supramolecules with different functionalities designed by self-assembly represent a growing area of research due to their versatile applications, particularly as anticancer agents. Four novel boron dipyrromethene (BODIPY)-based octacationic heterometallic molecular squares, were synthesized by self-assembly via reaction of dipyridyl BODIPY ligands with suitable 90° palladium and platinum acceptors. The formation of the as-synthesized molecular squares was confirmed by multinuclear NMR spectroscopy, elemental analysis, high resolution electrospray mass spectrometry, UV-vis spectroscopy, and fluorescence spectroscopy.
View Article and Find Full Text PDFAs novel technologies have been developed, emissions of gases of volatile organic compounds (VOCs) have increased. These affect human health and are destructive to the environment, contributing to global warming. Hence, regulations on the use of volatile organic compounds have been strengthened.
View Article and Find Full Text PDFA new N,O-based BODIPY ligand was synthesized and further utilized to develop highly fluorescent and photostable Ru(II), Rh(III), and Ir(III) metal complexes. The complexes were fully characterized by different analytical techniques including single-crystal XRD studies. The photostabilities and live cell imaging capabilities of the complexes were investigated via confocal microscopy.
View Article and Find Full Text PDFA facile, reliable, fast-response poly(3-hexylthiophene-2,5-diyl) (P3HT)-based humidity sensor was developed by introducing metal-organic frameworks (MOFs), HKUST-1, into the semiconducting layer. HKUST-1 displayed an excellent ability to capture water molecules, thereby generating and attracting charge carriers derived from the water molecules present in the active layer. The HKUST-1/P3HT hybrid film showed excellent device sensitivity with an enhanced electrical current and a threshold voltage shift as a function of the relative humidity due to the superior gas capture properties and the porosity of HKUST-1.
View Article and Find Full Text PDFThe search for new plant-based anti-inflammatory drugs continues in order to overcome the detrimental side effects of conventional anti-inflammatory agents, both steroidal and nonsteroidal. This study involves the quinoline SPE2, 7-hydroxy-6-methoxyquinolin-2(1 H)-one, isolated from the EtOAc fraction of Spondias pinnata bark. Structure elucidation was done using analytical spectroscopic methods including Fourier transform infrared spectroscopy, high-resolution electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy, and single-crystal X-ray crystallography.
View Article and Find Full Text PDFThe use of organic compounds with known medicinal properties in the synthesis of metal-based complexes is an important alternative to improve the biological activity of metal-based drugs. The reaction of [M(arene)Cl] (M = Ru, arene = p-cymene and M = Ir, arene = pentamethylcyclopentadienyl, cp*) with avobenzone (1-(4-tert-butylphenyl)-3-(4-methoxyphenyl)propane-1,3-dione, AVBH) and KOH in methanol leads to the formation of the neutral complexes [Ru(p-cymene)(AVB)Cl] 1 and [Ir(cp*)(AVB)Cl] 2 (cp* = pentamethylcyclopentadienyl). Subsequent reaction of 1 and 2 with pyridyl derivative-BODIPY ligands, BDP and BDPCC (BODIPY = boron dipyrromethene, BDP = 4-dipyridine boron dipyrromethene, BDPCC = 4-ethynylpyridine boron dipyrromethene) in methanol gives a series of four new dicationic supramolecules: [Ru(p-cymene)(AVB)BDP][2CFSO] 3, [Ir(cp*)(AVB)BDP][2CFSO] 4, [Ru(p-cymene)(AVB)BDPCC][2CFSO] 5 and [Ir(cp*)(AVB)BDPCC][2CFSO] 6.
View Article and Find Full Text PDFA new 4-ethynylpyridine 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based ligand L, which was synthesized by means of the Sonogashira coupling method, was used to obtain two new [2+2] iridium-based metallarectangles, 3 and 4. Ligand L and metallarectangles 3 and 4 were fully characterized through various analytical techniques. The structure of rectangle 4 was further confirmed by single-crystal X-ray diffraction analysis, which showed the formation of an expected [2+2] supramolecule, in which the iridium metal centers were bridged with ligand L to form the desired metallarectangle 4.
View Article and Find Full Text PDFVolatile organic compound (VOC) gases can cause harm to the human body with exposure over the long term even at very low concentrations (ppmv levels); thus, effective absorbents for VOC gas removal are an important issue. In this study, accordingly, graphene-based adsorbents with microsized pores were used as adsorbents to remove toluene and acetaldehyde gases at low concentrations (30ppm). Sufficient amounts of the adsorbents were prepared for use on filters and were loaded uniformly at 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2017
Designing and synthesizing the ordered light-harvesting systems, possessing complementary absorption and energy-transfer process between the chromophores, are essential steps to accomplish successful mimicking of the natural photosynthetic systems. Metal-organic frameworks (MOFs) can be considered as an ideal system to achieve this due to their highly ordered structure, superior synthetic versatility, and tailorable functionality. Herein, we have synthesized the new light-harvesting mixed-ligand MOFs (MLMs, MLM-1-3) via solvothermal reactions between a Zr cluster and a mixture of appropriate ratio of 1,3,6,8-tetrakis(p-benzoic acid)pyrene and [5,10,15,20-tetrakis(4-carboxy-phenyl)porphyrinato]-Zn(II) ligands.
View Article and Find Full Text PDFNovel Ru (2+2) rectangles were designed and synthesized by self-assembly of a new thiophene-functionalized dipyridyl BODIPY ligand, BDPS, and ruthenium(II) precursors. The complexes exhibited dose-dependent antiproliferative activities against cancer cells, in which some compounds selectively kill cancer cells. The net fluorescence due to BODIPY allowed us to visualize their location inside cancer cells.
View Article and Find Full Text PDF