We investigate the phase diagram of a two-dimensional magnetic topological system in the parameter space of uncorrelated Anderson disorder and Zeeman splitting energy. In the absence of disorder, the system undergoes the phases of higher-order topological insulators (HOTIs), Chern insulators (CIs) with Chern numbers = 2 and = 1, and band insulators successively with enhancing Zeeman energy. The phase boundary separating these phases is found to be strongly deformed by the disorder, which leads to several topological Anderson insulators.
View Article and Find Full Text PDFIt is both conceptually and practically fascinating to explore fundamental research studies and practical applications of two-dimensional systems with the tunable abundant valley Hall effect. In this work, based on first-principles calculations, the tunable abundant valley Hall effect is proved to appear in Janus monolayer VCGeN. When the magnetization is along the out-of-plane direction, VCGeN is an intrinsic ferromagnetic semiconductor with a valley feature.
View Article and Find Full Text PDFThe manipulation and regulation of valley characteristics have aroused widespread interest in emerging information fields and fundamental research. Realizing valley polarization is one crucial issue for spintronic and valleytronic applications, the concepts of a half-valley metal (HVM) and ferrovalley (FV) materials have been put forward. Then, to separate electron and hole carriers, a fresh concept of a quasi-HVM (QHVM) has been proposed, in which only one type of carrier is valley polarized for electron and hole carriers.
View Article and Find Full Text PDFTopological phase transition can be induced by electronic correlation effects combined with spin-orbit coupling (SOC). Here, based on the first-principles calculations + approach, the influence of electronic correlation effects and SOC on topological and electronic properties of the Janus monolayer OsClBr is investigated. With intrinsic out-of-plane (OOP) magnetic anisotropy, the Janus monolayer OsClBr exhibits a sequence of states, namely, the ferrovalley (FV) to half-valley-metal (HVM) to quantum anomalous valley Hall effect (QAVHE) to HVM to FV states with increasing values.
View Article and Find Full Text PDFTopology and ferrovalley (FV) are two essential concepts in emerging device applications and the fundamental research field. To date, relevant reports are extremely rare about the coupling of FV and topology in a single system. By Monte Carlo (MC) simulations and first-principles calculations, a stable intrinsic FV ScBrI semiconductor with high Curie temperature () is predicted.
View Article and Find Full Text PDFThe Dzyaloshinskii-Moriya interaction (DMI), which only exists in noncentrosymmetric systems, plays an important role in the formation of exotic chiral magnetic states. However, the absence of the DMI occurs in most two-dimensional (2D) magnetic materials due to their intrinsic inversion symmetry. Here, by using first-principles calculations, we demonstrate that a significant DMI can be obtained in a series of Janus monolayers of dichalcogenides XSeTe (X = Nb, Re) in which the difference between Se and Te on the opposite sides of X breaks the inversion symmetry.
View Article and Find Full Text PDFTwo-dimensional (2D) nodal-loop semimetal (NLSM) materials have attracted much attention for their high-speed and low-consumption transporting properties as well as their fantastic symmetry protection mechanisms. In this paper, using systematic first-principles calculations, we present an excellent NLSM candidate, a 2D AlSb monolayer, in which the conduction and valence bands cross with each other forming fascinating multiple nodal-loop (NL) states. The NLSM properties of the AlSb monolayer are protected by its glide mirror symmetry, which was confirmed using a symmetry-constrained six-band tight-binding model.
View Article and Find Full Text PDFInterfaces between materials are ubiquitous in materials science, especially in devices. As device dimensions continue to be reduced, understanding the physical characteristics that appear at interfaces is crucial to exploit them for applications, spintronics in this case. Here, based on first-principles calculations, we propose a general and tunable platform to realize an exotic quantum anomalous Hall effect (QAHE) with the germanene monolayer by proximity coupling to a semiconducting ferromagnetic NiI (Ge/NiI).
View Article and Find Full Text PDFMonolayer CrGeTe (ML-CGT) has attracted broad interest due to its novel electronic and magnetic properties. However, there are still controversies on the origin of its intrinsic magnetism. Here, by exploring the electronic and magnetic properties of ML-CGT, we find that the magnetic shape anisotropy (MSA) is vital for establishing the long-range ferromagnetism, except for the contribution from magnetocrystalline anisotropy energy (MCA).
View Article and Find Full Text PDFTwo-dimensional (2D) materials featuring a nodal-loop (NL) state have been drawing considerable attention in condensed matter physics and materials science. Owing to their structural polymorphism, recent high-profile metal-boride films have great advantages and the potential to realize a NL. Herein, a 2D NiB monolayer with an anisotropic NL nature is proposed and investigated using first-principles calculations.
View Article and Find Full Text PDFTwo-dimensional (2D) Weyl semi-half-metals (WSHMs) have attracted tremendous interest for their fascinating properties combining half-metallic ferromagnetism and Weyl fermions. In this work, we present a NiCS3 monolayer as a new 2D WSHM material using systematic first-principles calculations. It has 12 fully spin-polarized Weyl nodal points in one spin channel with a Fermi velocity of 3.
View Article and Find Full Text PDFHalf-Dirac semimetals (HDSs), which possess 100% spin-polarizations for Dirac materials, are highly desirable for exploring various topological phases of matter as low-dimensionality opens unprecedented opportunities for manipulating the quantum state of low-cost electronic nanodevices. The search for high-temperature HDSs is still a current hotspot and yet challenging experimentally. Herein based on first-principles calculations, we propose the realization of Half Dirac semimetals (HDS) in two-dimensional (2D) Kagome transition-metal nitride CdN, which is robust against strain engineering.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2020
Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a promising candidate of NLHMs, which is thermodynamically and dynamically stable.
View Article and Find Full Text PDFSearching for two-dimensional (2D) group V materials with ferromagnetism, elastic anisotropy, and carrier mobility and tunable band structure is one key to developing constantly developing nanodevices. The 2D monolayers SnP with x/y (1/1, 1/2, 1/3, and so on) coordination number are studied based on the particle-swarm optimization technique combined with the density functional theory optimization. Its thermal stability can be confirmed by molecular dynamics at 70K and 300K, indicating that the novel 2D materials have a stable existence.
View Article and Find Full Text PDF2D ferromagnetic (FM) materials with high temperature, large magnetocrystalline anisotropic energy (MAE), and controllable magnetization are highly desirable for novel nanoscale spintronic applications. Herein by using DFT and Monte Carlo simulations, we demonstrate the possibility of realizing intrinsic ferromagnetism in 2D monolayer CrX (X = P, As), which are stable and can be exfoliated from their bulk phase with a van der Waals layered structure. Following the Goodenough-Kanamori-Anderson (GKA) rule, the long-range ferromagnetism of CrX is caused via a 90° superexchange interaction along Cr-P(As)-Cr bonds.
View Article and Find Full Text PDFOpening up a band gap without lowering high carrier mobility in germanene and finding suitable substrate materials to form van der Waals heterostructures have recently emerged as an intriguing way of designing a new type of electronic devices. By using first-principles calculations, here, we systematically investigate the effect of the GaGeTe substrate on the electronic properties of monolayer germanene. Linear dichroism of the Dirac-cone like band dispersion and higher carrier mobility (9.
View Article and Find Full Text PDFThe combination of Dirac and Valley physics in one single-layer system is a very interesting topic and has received widespread attention in materials science and condensed matter physics. Using density-functional theoretical calculations, we predict that a two-dimensional (2D) cyanided group-VA monolayer, MAs(CN) (M = Sb, Bi), can turn into the spin-valley Dirac point (svDP) state under external strains. In sharp contrast to the symmetry protected 2D Dirac semimetal (DSM), the Dirac Fermions in svDP materials are spin non-degenerate due to strong spin-splitting under SOC.
View Article and Find Full Text PDFTwo-dimensional (2D) nodal-loop (NL) semimetals have attracted tremendous attention for their abundant physics and potential device applications, whereas the realization of gapless NL semimetals robust against spin-orbit coupling (SOC) remains a big challenge. Recently, breakthroughs have been made with the realization of gapless NL semimetals in 2D half-metallic materials, where NLs were protected by a horizontal mirror plane symmetry. Here we first propose an alternative nonsymmorphic horizontal glide mirror plane symmetry which could protect the NLs in 2D materials.
View Article and Find Full Text PDFUsing calculations, we present a two-dimensional (2D) α-2D-germanene dioxide material with an ideal sp bonding network which possesses a large band gap up to 2.50 eV. The phonon dispersion curves and molecular dynamics (MD) simulation under the chosen parameters suggest that the novel 2D structure is stable.
View Article and Find Full Text PDFRecent experimental success in the realization of two-dimensional (2D) magnetism has invigorated the search for new 2D magnetic materials with a large magnetocrystalline anisotropy, high Curie temperature, and high carrier mobility. Using first-principles calculations, here we predict a novel class of single-spin Dirac fermion states in a 2D Ta2S3 monolayer, characterized by a band structure with a large gap in one spin channel and a Dirac cone in the other with carrier mobility comparable to that of graphene. Ta2S3 is dynamically and thermodynamically stable under ambient conditions, and possesses a large out-of-plane magnetic anisotropy energy and a high Curie temperature (TC = 445 K) predicted from the spin-wave theory.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2019
Ferroelasticity and band topology are two intriguing yet distinct quantum states of condensed matter materials. Their coexistence in a single two-dimensional (2D) lattice, however, has never been observed. Here, we found that the 2D tetragonal HfC monolayer allowed simultaneous presence of ferroelastic and topological orders.
View Article and Find Full Text PDFRashba spin-orbit coupling (SOC) in topological insulators (TIs) is a very interesting phenomenon and has received extensive attention in two-dimensional (2D) materials. However, the coexistence of Rashba SOC and band topology, especially for materials with a square lattice, is still lacking. Here, by using first-principles calculations, we propose for the first time a SeTe monolayer as a 2D candidate with these novel properties.
View Article and Find Full Text PDFNodal-ring materials with a spin-polarized feature have attracted intensive interest recently due to their exotic properties and potential applications in spintronics. However, such a type of two-dimensional (2D) lattice is rather rare and difficult to realize experimentally. Here, we identify the first 2D Honeycomb-Kagome (HK) lattice, Mn-Cyanogen, as a new single-spin nodal-ring material by using first-principles calculations.
View Article and Find Full Text PDFA great obstacle for the practical applications of the quantum anomalous Hall (QAH) effect is the lack of suitable two-dimensional (2D) materials with a sizable nontrivial band gap, high Curie temperature, and high carrier mobility. Based on first-principles calculations, here, we propose the realizations of these intriguing properties in asymmetry-functionalized 2D SnHN and SnOH lattices. Spin-polarized band structures reveal that SnOH monolayer exhibits a spin gapless semiconductor (SGS) feature, whereas SnNH is converted to SGS under compressive strain.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2018
Topological insulating material with dissipationless edge states is a rising star in spintronics. While most two-dimensional (2D) topological insulators belong to group-IV or -V elements in a honeycomb lattice, herein, we propose a new topological phase in the 2D hexagonal group-III crystal, h-Tl, based on a tight-binding model and density-functional theory calculation. Analysis of band dispersion reveals a Dirac nodal-ring near the Fermi level, which is attributed to px,y/pz band crossing.
View Article and Find Full Text PDF