Publications by authors named "Chang-Su Cao"

Neural-network quantum states (NQS) employ artificial neural networks to encode many-body wave functions in a second quantization through variational Monte Carlo (VMC). They have recently been applied to accurately describe electronic wave functions of molecules and have shown the challenges in efficiency compared with traditional quantum chemistry methods. Here, we introduce a general nonstochastic optimization algorithm for NQS in chemical systems, which deterministically generates a selected set of important configurations simultaneously with energy evaluation of NQS.

View Article and Find Full Text PDF

The Periodic Law of Chemistry is one of the great discoveries in cultural history. Elements behaving chemically similar are empirically merged in groups of a Periodic Table, each element with valence electrons per neutral atom, and with upper limit for the oxidation and valence numbers. Here, we report that among the usually mono- or di-valent s-block elements ( = 1 or 2), the heaviest members (Fr, Ra, E, and E) with atomic numbers Z = 87, 88, 119, 120 form unusual 5- or 6-valent compounds at ambient conditions.

View Article and Find Full Text PDF

Versatile graphene-like two-dimensional materials with s-, p- and d-block elements have aroused significant interest because of their extensive applications while there is a lack of such materials with f-block elements. Herein we report a unique one composed of the f-block element moiety of uranyl (UO ) through a global-minimum structure search. Its geometry is found to be similar to that of graphene with a honeycomb-like hexagonal unit composed of six uranyl ligands, where each uranyl is bridged by two superoxido groups and a pair of hydroxyl ligands.

View Article and Find Full Text PDF

The 24 trioxide halide molecules MOX of the manganese group (M = Mn-Bh; X = F-Ts), which are iso-valence-electronic with the famous MnO ion, have been quantum-chemically investigated by quasi-relativistic density-functional and ab initio correlated approaches. Geometric and electronic structures, valence and oxidation numbers, vibrational and electronic spectral properties, energetic stabilities of the monomers in the gas phase, and the decay mode of MnOF have been investigated. The light Mn-3d species are most strongly electron-correlated, indicating that the concept of a closed-shell Lewis-type single-configurational structure [Mn(d) O(p) F(p)] reaches its limits.

View Article and Find Full Text PDF

While reduction reactions are ubiquitous in chemistry, it is very challenging to further reduce electron-rich compounds, especially the anionic ones. In this work, the reduction of 1,3-butadienyl dianion, the anionic conjugated olefin, has been realized by divalent rare-earth metal compounds (SmI), resulting in the formation of novel 2-butene tetraanion bridged disamarium(III) complexes. Density functional theory (DFT) analyses reveal two features: (i) the single electron transfer (SET) from 4f atomic orbitals (AOs) of each Sm center to the antibonding π*-orbitals of 1,3-butadienyl dianion is feasible and the new HOMO formed by the bonding interaction between Sm 5d orbitals (AOs) and the π*-orbitals of 1,3-butadienyl dianion can accept favorably 2e from 4f AOs of Sm(II); (ii) the 2-butene tetraanionic ligand serves as a unique 10e donating system, in which 4e act as two σ-donation bonding interactions while the rest 6e as three π-donation bonding interactions.

View Article and Find Full Text PDF