Publications by authors named "Chang-Ru Zhang"

Bone defect healing is a multi-factorial process involving the inflammatory microenvironment, bone regeneration and the formation of blood vessels, and remains a great challenge in clinical practice. Combined use of three-dimensional (3D)-printed scaffolds and bioactive factors is an emerging strategy for the treatment of bone defects. Scaffolds can be printed using 3D cryogenic printing technology to create a microarchitecture similar to trabecular bone.

View Article and Find Full Text PDF

Repairing osteochondral defects necessitates the intricate reestablishment of the microenvironment. The cartilage layer consists of a porous gelatin methacryloyl hydrogel (PGelMA) covalently crosslinked with the chondroinductive peptide CK2.1 via a "linker" acrylate-PEG-N-hydroxysuccinimide (AC-PEG-NHS).

View Article and Find Full Text PDF

Purpose: To prepare PEGS/β-TCP modified magnesium alloy (PEGS/β-TCP/MZG) membranes by forming a glycolated poly(sebacate)/β-tricalcium phosphate (PEGS/β-TCP) coating on the surface of magnesium-zinc-gadolinium alloy (MZG) membranes, and to evaluate the osteogenic induction activity and immunomodulatory properties of PEGS/β-TCP/MZG using the material extract medium.

Methods: PEGS/β-TCP coating was prepared on the surface of MZG by solvent method, and the PEGS/β-TCP/MZG membrane was fabricated and compared with PEGS/β-TCP and MZG to examine the morphology, composition, and hydrophilicity. The amount of magnesium ions released and the pH value of the materials were tested after 3 days of immersion.

View Article and Find Full Text PDF

Diabetic wound healing has become a serious healthcare challenge. The high-glucose environment leads to persistent bacterial infection and mitochondrial dysfunction, resulting in chronic inflammation, abnormal vascular function, and tissue necrosis. To solve these issues, we developed a double-network hydrogel, constructed with pluronic F127 diacrylate (F127DA) and hyaluronic acid methacrylate (HAMA), and enhanced by SS31-loaded mesoporous polydopamine nanoparticles (MPDA NPs).

View Article and Find Full Text PDF
Article Synopsis
  • Repairing bone defects in diabetic patients is challenging due to impaired regeneration mechanisms, particularly involving endothelial cells.
  • The study explores using small extracellular vesicles (sEVs) combined with a specialized coating on β-TCP scaffolds to enhance bone healing.
  • Findings indicate that this method effectively promotes bone regeneration in diabetic conditions by improving blood vessel formation, supporting bone growth, and reducing bone resorption.
View Article and Find Full Text PDF