Publications by authors named "Chang-Qing Deng"

Network pharmacology and animal and cell experiments were employed to explore the mechanism of astragaloside Ⅳ(AST Ⅳ) combined with Panax notoginseng saponins(PNS) in regulating angiogenesis to treat cerebral ischemia. The method of network pharmacology was used to predict the possible mechanisms of AST Ⅳ and PNS in treating cerebral ischemia by mediating angiogenesis. In vivo experiment: SD rats were randomized into sham, model, and AST Ⅳ(10 mg·kg~(-1)) + PNS(25 mg·kg~(-1)) groups, and the model of cerebral ischemia was established with middle cerebral artery occlusion(MCAO) method.

View Article and Find Full Text PDF

This study aims to investigate the molecular mechanism of tanshinone Ⅱ_(A )(TaⅡ_A) combined with endothelial progenitor cells-derived exosomes(EPCs-exos) in protecting the aortic vascular endothelial cells(AVECs) from oxidative damage via the phosphatidylinositol 3 kinase(PI3K)/protein kinase B(Akt) pathway. The AVECs induced by 1-palmitoyl-2-(5'-oxovaleroyl)-sn-glycero-3-phosphocholine(POVPC) were randomly divided into model, TaⅡ_A, EPCs-exos, and TaⅡ_A+EPCs-exos groups, and the normal cells were taken as the control group. The cell counting kit-8(CCK-8) was used to examine the cell proliferation.

View Article and Find Full Text PDF

The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage.

View Article and Find Full Text PDF

Objective: To study the effect of borneol combined with astragaloside IV and Panax notoginseng saponins (BAP) on promoting neurogenesis by regulating microglia polarization after cerebral ischaemia-reperfusion(CI/R) in rats.

Methods: A focal CI/R injury model was established. Evaluated the effects of BAP on ischaemic brain injury, on promoting neurogenesis, on inhibiting Inflammatory microenvironment and TLR4/MyD88/NFκB signalling pathway.

View Article and Find Full Text PDF

Importance: Preclinical and clinical studies have suggested a neuroprotective effect of remote ischemic conditioning (RIC), which involves repeated occlusion/release cycles on bilateral upper limb arteries; however, robust evidence in patients with ischemic stroke is lacking.

Objective: To assess the efficacy of RIC for acute moderate ischemic stroke.

Design, Setting, And Participants: This multicenter, open-label, blinded-end point, randomized clinical trial including 1893 patients with acute moderate ischemic stroke was conducted at 55 hospitals in China from December 26, 2018, through January 19, 2021, and the date of final follow-up was April 19, 2021.

View Article and Find Full Text PDF

Background: Astragalus and Panax notoginseng are significant traditional Chinese medicines for treating ischemic stroke, with astragaloside IV (AST IV) and Panax notoginseng saponins (PNS) being the major effective compounds, respectively. These compounds can also be used in combination. We have previously shown that AST IV and PNS have an antagonistic effect on cerebral ischemia/reperfusion (I/R) injury, and the combination of these two drugs can elevate this effect; unfortunately, AST IV and PNS cannot easily enter the brain tissues through the blood brain barrier (BBB).

View Article and Find Full Text PDF

Pyroptosis and necroptosis are closely associated with the mechanism underlying cerebral ischemia-reperfusion (I/R) injury. The combination of astragaloside IV (AST IV) and saponins (PNS) has remarkable effects on the alleviation of cerebral I/R damage. However, whether inhibition of pyroptosis and necroptosis is the mechanism underlying the beneficial effects of this drug combination on cerebral I/R injury remains unclear.

View Article and Find Full Text PDF

To explore the main active components and effects of cell cycle regulation mechanism of Astragali radix (AR) and Angelicae sinensis radix (ASR) on oxidative damage in vascular endothelial cells, a model of oxidative damage in human umbilical vein endothelial cells (HUVECs) induced by oxidized low-density lipoprotein (ox-LDL) treatment was developed. Based on the "knock-out/knock-in" model of the target component, cell viability, intracellular reactive oxygen species (ROS), and lactate dehydrogenase (LDH) leakage were assessed by Cell Counting Kit-8 assay, fluorescent probe 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA), and colorimetric assay, respectively, to evaluate the protective effect of the active components of AR and ASR (astragaloside IV (AS IV), astragaloside I (AS I), formononetin (FRM), calycosin (CAL), calycosin-7-O--D glucoside (CLG), and ferulic acid (FRA)) against oxidative damage. The cell cycle and expression of genes encoding cyclins and cyclin-dependent kinases (CDKs) were observed using flow cytometry and quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF

Objective: To analyze the correlation between the Kellgren-Lawrence (K-L) score of knee osteoarthritis (KOA) patients with different degrees and their urine concentration of C-terminal telopeptide of collagen type II (CTX-II) and interleukin-1β (IL-1β), and to further evaluate the diagnostic value of CTX-II and IL-1β during the pathological process by producing an experimental osteoarthritis (OA) model in rabbits.

Methods: From 1 January 2017 to 31 December 2018, a total of 34 subjects (7 mild, 9 moderate, 9 severe arthritis patients, and 9 healthy individuals) comprising 16 men and 18 women were included in this study. Patients were diagnosed according to the American College of Rheumatology (ACR) criteria.

View Article and Find Full Text PDF

Myocardial ischaemia reperfusion injury (MIRI) is considered the primary cause of death in patients with cardiovascular diseases. Recently, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been found to be involved in the pathogenesis of MIRI. However, whether lncRNA ROR and miR-124-3p play roles in MIRI and the underlying mechanism remain undetermined.

View Article and Find Full Text PDF

Although the compatibility of Astragali Radix (AR) and Angelicae Sinensis Radix (ASR) has favorable effect on promoting hematopoiesis in traditional Chinese medicine (TCM), the main active components and pharmacological mechanism are unknown. We investigated the five active components and its mechanisms and . Five active components of Astragalus glycosides (AST), Formononetin (FRM), Ferulic acid (FRA), Calycosin (CAL), and Calycosin-7-glucoside (CLG), which could be absorbed in intestinal tract, were detected in this study.

View Article and Find Full Text PDF

The present study was aimed to investigate the protective effect and anti-inflammation mechanism of astragaloside IV (AST-IV) on cerebral ischemia and reperfusion injury. Following the establishment of cerebral ischemia and reperfusion model in rats by modified suture method, neurological deficit scores and cerebral infarct volume were used to evaluate the pharmacological effect of AST-IV against cerebral ischemia-reperfusion injury. Western blot was used to detect the expression levels of NLRP3, pro-Caspase-1, Caspase-1, pro-IL-1β, IL-1β, pro-IL-18, IL-18, phosphorylated and total nuclear factor kappa B (NF-κB)/p65 protein in the brain tissue.

View Article and Find Full Text PDF
[Pyroptosis and stroke].

Sheng Li Xue Bao

February 2018

Pyroptosis is a form of inflammatory programmed cell death activated by caspase-1 and caspase-4/5/11, and involves in the pathogenesis of infectious diseases and nervous system diseases. Pyroptosis is mediated by canonical inflammasome pathway and non-canonical inflammasome pathway. The canonical inflammasome pathway is activated in stroke and aggravates brain injury.

View Article and Find Full Text PDF

The aim is to study the effect and its mechanism of Astragalus Radix combined with Angelicae Sinensis Radix on the proliferation of hematopoietic stem cells(HSCs) in senescence model. After drug-containing plasma of rats was prepared via intragastric administration, HSCs of mice were cultured in vitro, and then they were divided into blank control group, model group, blank plasma group, Astragalus Radix + Angelicae Sinensis Radix 1∶1 group and 10∶1 group, Angelicae Sinensis Radix plasma group, and Astragalus Radix plasma group. HSCs senescence model was induced by using tert-butyl hydrogen peroxide(t-BHP), and intervened by drug-containing plasma.

View Article and Find Full Text PDF

The aim is to study the effect of astragaloside Ⅳ (AST Ⅳ) combined with Panax notoginseng saponins (PNS) on cerebral ischemia-reperfusion injury, and to probe the synergistic mechanism through the pharmacokinetics of the four major components such as AST Ⅳ, ginsenoside Rg₁ (Rg₁), ginsenoside Rb₁ (Rb₁), notoginsenoside R₁ (R₁) in cerebral ischemia-reperfusion rats. Following the establishment of cerebral ischemia/reperfusion model in rats by modified suture method, neurological function score, cerebral infarction area and pathomorphology were used to evaluate the pharmacological effect that the combination of AST Ⅳ and PNS antagonized cerebral ischemia-reperfusion injury; the contents of AST Ⅳ, Rg₁, Rb₁, R₁ in rat plasma of different time points were determined with ultra performance liquid chromatography tandem massspectrometry (UPLC-MS/MS), pharmacokinetic parameters were calculated and pharmacokinetics changes of the main effective components were analyzed. The results showed that AST Ⅳ, PNS alone and their combination could reduce the cerebral infarction area of rats, relieve the behavioral scores of neurologic deficit, improve the pathological changes after cerebral ischemia, the effects of the combination were better.

View Article and Find Full Text PDF

Danggui Buxue Tang (DBT), a combination of Astragalus and Angelica at a 5 : 1 ratio, mainly promotes hematopoiesis. However, in the clinic, the combination ratio of Astragalus and Angelica to treat low hematopoietic function is not an absolute 5 : 1 ratio, suggesting that the herbs may promote hematopoiesis better after being combined at a certain range of ratios. The objective of this study is to investigate the effect of different ratio combinations of Astragalus and Angelica on bone marrow hematopoiesis suppression induced by cyclophosphamide (CTX) and to probe the interaction and mechanism of Astragalus combined with Angelica in promoting hematopoiesis.

View Article and Find Full Text PDF

The aim of this study was to explore the effect by which the combination of Astragaloside IV (AST IV) and Ginsenoside Rg1 (Rg1) resisted autophagic injury in PC12 cells induced by oxygen glucose deprivation/reoxygenation (OGD/R). We studied the nature of the interaction between AST IV and Rg1 that inhibited autophagy through the Isobologram method, and investigated the synergistic mechanism via the PI3K I/Akt/mTOR and PI3K III/Becline-1/Bcl-2 signaling pathways. Our results showed that, based on the 50% inhibiting concentration (IC50), AST IV combined with Rg1 at a 1:1 ratio resulted in a synergistic effect, whereas the combination of the two had an antagonistic effect on autophagy at ratios of 1:2 and 2:1.

View Article and Find Full Text PDF

Background: A decreased plasma level of soluble form of the receptor for advanced glycation end products (sRAGE) in patients with Alzheimer's disease (AD) has been reported. However, no evidence has shown whether the sRAGE plasma level of AD patients may differentiate from other types of dementia.

Methods: Our study assessed sRAGE concentrations in the following 121 individuals in Chongqing area: 36 patients with AD, 12 with vascular dementia (VaD), 14 with mixed dementia (MD), 24 with other dementia (OD) including Parkinson's disease dementia, frontotemporal dementia, paralytic dementia and 35 cognitively normal controls.

View Article and Find Full Text PDF

This paper was aimed to explore the effects of glycosides, the effective component of Buyang Huanwu decoction, and its main active components such as astragaloside Ⅳ, amygdalin, peoniflorin and their combinations on vascular smooth muscle cells (VSMC) proliferation, clarify the major active materials of anti-VSMC proliferation and investigate the mechanisms via the signal transduction pathway. Plasma containing drug was prepared via oral administration in rats. VSMCs of rats aorta were cultured, and then VSMC proliferation was stimulated by using platelet derived growth factor (PDGF).

View Article and Find Full Text PDF

Background: Astragalus and Panax notoginseng are traditional Chinese medicines used for the treatments of cardio-cerebrovascular ischemic diseases, astragaloside IV (AST IV) and ginsenoside Rg1 (Rg1), ginsenoside Rb1 (Rb1), notoginsenoside R1 (R1) are their active components.

Objective: The purpose of this work was to investigate the effect of AST IV combined with Rg1, Rb1, R1 on energy metabolism in brain tissues after cerebral ischemia-reperfusion in mice.

Materials And Methods: C57BL/6 mice were randomly divided into 11 groups, treated for 3 days.

View Article and Find Full Text PDF

Astragalus and Panax notoginseng are commonly used to treat cardio-cerebrovascular diseases in China and are often combined together to promote curative effect. We speculate that the enhancement of the combination on anticerebral ischemia injury may come from the main active components. The purpose of this work was to probe the effects and mechanisms of Astragaloside IV (the active component of Astragalus) combined with Ginsenoside Rg1, Ginsenoside Rb1, and Notoginsenoside R1 (the active components of P.

View Article and Find Full Text PDF

Autophagy is a lysosome-mediated degradation process for non-essential or damaged cellular constituents, playing an important homeostatic role in cell survival, differentiation and development to maintain homeostasis. Autophagy is involved in tumors as well as neurodegenerative, cardiovascular and cerebrovascular diseases. Recently, active compounds from traditional Chinese medicine (TCM) have been found to modulate the levels of autophagy in tumor cells, nerve cells, myocardial cells and endothelial cells.

View Article and Find Full Text PDF

Objective: To explore the effects and molecular mechanisms of the combination between total Astragalus extract (TAE) and total Panax notoginseng saponins (TPNS) against cerebral ischemia-reperfusion injury.

Methods: C57BL/6 mice were randomly divided into sham-operated group, model group, TAE (110 mg/kg) group, TPNS (115 mg/kg) group, TAE-TPNS combination group and Edaravone (4 mg/kg) group, treated for 4 days, then, cerebral ischemia-reperfusion injury was established by bilateral common carotid artery (CCA) ligation for 20 min followed by reperfusion for 1 and 24 h.

Results: TPNS could increase adenosine triphosphate (ATP) level, TAE and TAE-TPNS combination increased ATP, adenosine diphosphate (ADP) contents and Na-K-ATPase activity, and the effects of TAE-TPNS combination were stronger than those of TAE or TPNS alone after reperfusion for 1 h.

View Article and Find Full Text PDF