Publications by authors named "Chang-Min Xiong"

This work reports on the emergence of quantum Griffiths singularity (QGS) associated with the magnetic field induced superconductor-metal transition (SMT) in unconventional Nd_{0.8}Sr_{0.2}NiO_{2} infinite layer superconducting thin films.

View Article and Find Full Text PDF

The recent discovery of superconductivity in infinite-layer nickelates generates tremendous research endeavors, but the ground state of their parent compounds is still under debate. Here, we report experimental evidence for the dominant role of Kondo scattering in the underdoped NdSrNiO thin films. A resistivity minimum associated with logarithmic temperature dependence in both longitudinal and Hall resistivities are observed in the underdoped NdSrNiO samples before the superconducting transition.

View Article and Find Full Text PDF

Experimentally, we found the percentage of low valence cations, the ionization energy of cations in film, and the band gap of substrates to be decisive for the formation of two-dimensional electron gas at the interface of amorphous/crystalline oxide (a-2DEG). Considering these findings, we inferred that the charge transfer from the film to the interface should be the main mechanism of a-2DEG formation. This charge transfer is induced by oxygen defects in film and can be eliminated by the electron-absorbing process of cations in the film.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates in-gap states (IGSs) in perovskite oxide heterojunction films and their importance in forming and influencing interfacial two-dimensional electron gas (2DEG).
  • It finds that IGSs can trap electrons, hindering charge transfer between the film and the interface, which can lead to insulating behavior at the interface.
  • An ion trapping model is proposed to explain both the IGS phenomenon and experimental results like the unexpected detection of 2DEG at a normally insulating interface, along with the effects of substitution layers on 2DEG formation.
View Article and Find Full Text PDF

We use the tip of a scanning tunneling microscope (STM) to manipulate single weakly bound nanometer-sized sheets on a highly oriented pyrolytic graphite (HOPG) surface through artificially increasing the tip and sample interaction by pretreatment of the surface using a liquid thiol molecule. By this means it is possible to tear apart a graphite sheet against a step and fold this part onto the HOPG surface and thus generate graphene superlattices with hexagonal symmetry. The tip and sample surface interactions, including the van der Waals force, electrostatic force and capillary attraction force originating from the Laplace pressure due to the formation of a highly curved fluid meniscus connecting the tip and sample, are discussed quantitatively to understand the formation mechanism of a graphene superlattice induced by the STM tip.

View Article and Find Full Text PDF