Publications by authors named "Chang-Ling Zou"

We propose and experimentally demonstrate a novel protocol for transferring quantum states between superconducting cavities. This approach utilizes continuous two-mode squeezing interactions to generate entanglement without the exchange of any carrier photons. In contrast to the discrete operations of entanglement and Bell-state measurement in quantum teleportation, our scheme is symmetric and continuous.

View Article and Find Full Text PDF

We report on the experimental realization of a standing-wave atom tweezer (SWAT) by aligning tightly focused dipole laser beams from a commercial objective lens and a metalens on a chip. By independently tuning the laser intensities of the two beams, we demonstrate the controlled loading of multiple atoms into the SWAT. We systematically investigate the influence of the standing-wave potential modulation depth on single-atom loading dynamics and quantitatively estimate the number of atoms in the SWAT by calculating the fluorescence of trapped atoms.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have made significant advances in understanding how to discriminate between quantum operations, especially in distinguishing quantum states, with some initial experiments using optical photons.
  • Despite this progress, effectively demonstrating the discrimination of both unitary and nonunitary quantum operations has proven challenging, particularly in complex quantum systems.
  • This study successfully showcases the optimal method for discriminating up to six displacement operators and nonunitary operations, offering new possibilities for quantum information processing and quantum sensing applications.
View Article and Find Full Text PDF

In practical sensing tasks, noise is usually regarded as an obstacle that degrades the sensitivity. Fortunately, stochastic resonance can counterintuitively harness noise to notably enhance the output signal-to-noise ratio in a nonlinear system. Although stochastic resonance has been extensively studied in various disciplines, its potential in realistic sensing tasks remains largely unexplored.

View Article and Find Full Text PDF

The fluorescence collection from single atoms and emitters has been extensively utilized in quantum information and quantum optics research. Here, we investigated the collection efficiency of an objective lens by drawing an analogy between the free-space beam (FSB) and a waveguide mode. We explored how efficiency is influenced by their thermal motion within a dipole trap.

View Article and Find Full Text PDF

An approach for continuous tuning of on-chip optical delay with a microring resonator is proposed and demonstrated. By introducing an electro-optically tunable waveguide coupler, the bus waveguide to the resonance coupling can be effectively tuned from the under-coupling regime to the over-coupling regime. The optical delay is experimentally characterized by measuring the relative phase shift between lasers and shows a large dynamic range of delay from -600 to 600 ps and an efficient tuning of delay from -430 to -180 ps and from 40 to 240 ps by only a 5 V voltage.

View Article and Find Full Text PDF

The grating-based magneto-optical trap (GMOT) is a promising approach for miniaturizing cold-atom systems. However, the power consumption of a GMOT system dominates its feasibility in practical applications. In this study, we demonstrated a GMOT system based on planar elements that can operate with low power consumption.

View Article and Find Full Text PDF
Article Synopsis
  • On-chip microring resonators (MRRs) are used to create scalable and efficient time-delayed reservoir computing (RC) systems, but a single MRR lacks sufficient memory for diverse tasks.
  • To address this, a new RC system combines a silicon-based nonlinear MRR with a series of linear MRRs that provide a high-quality memory capacity.
  • The proposed system demonstrates comparable performance to existing models while being significantly smaller in size, suggesting a potential for better scalability and integration in photonic applications.
View Article and Find Full Text PDF
Article Synopsis
  • The study introduces on-chip acousto-optic modulators that work at an optical wavelength of 780 nm and microwave frequency of 6.835 GHz, utilizing a lithium-niobate-on-sapphire platform.
  • These modulators effectively excite surface acoustic waves and enhance interactions with optical modes in waveguides, leading to the design of high-efficiency phase modulators and single-sideband mode converters.
  • The researchers note that the interactions between the microwave and optical wavelengths are sensitive to waveguide width, suggesting the devices have compact designs and high efficiencies that could be useful for applications involving rubidium atoms and potentially for other wavelengths in imaging and sensing technologies.
View Article and Find Full Text PDF

We systematically investigated the intrinsic mechanical flexural modes of tapered optical fibers (TOFs) with a high aspect ratio up to 3×10^{4}. Based on the near-field scattering of the hemispherical microfiber tip to the vibrating TOF evanescent field, we detected more than 320 ordered intrinsic mechanical modes through the TOF transmission spectra which was enhanced by 72 dB compared to without near-field scattering. The trend of the vibration amplitude with the mode order was similar to pendulum waves.

View Article and Find Full Text PDF

Non-Hermitian (NH) extension of quantum-mechanical Hamiltonians represents one of the most significant advancements in physics. During the past two decades, numerous captivating NH phenomena have been revealed and demonstrated, but all of which can appear in both quantum and classical systems. This leads to the fundamental question: what NH signature presents a radical departure from classical physics? The solution of this problem is indispensable for exploring genuine NH quantum mechanics, but remains experimentally untouched so far.

View Article and Find Full Text PDF

Magnetic-free nonreciprocal optical devices have attracted great attention in recent years. Here, we investigated the magnetic-free polarization rotation of light in an atom vapor cell. Two mechanisms of magnetic-free nonreciprocity have been realized in ensembles of hot atoms, including electromagnetically induced transparency and optically-induced magnetization.

View Article and Find Full Text PDF

An integrated polarization-insensitive vortex beam generator is proposed in this study. It is composed of a holographic grating on a multi-layer waveguide, which enables conversion of Transverse Electric (TE) and Transverse Magnetic (TM) waveguide modes to y-polarized and x-polarized optical vortex beams, respectively. The conversion efficiency and the phase fidelity are numerically analyzed, and the working bandwidth is about 100 nm from 1500 nm to 1600 nm with a phase fidelity above 0.

View Article and Find Full Text PDF

Deep learning and quantum computing have achieved dramatic progresses in recent years. The interplay between these two fast-growing fields gives rise to a new research frontier of quantum machine learning. In this work, we report an experimental demonstration of training deep quantum neural networks via the backpropagation algorithm with a six-qubit programmable superconducting processor.

View Article and Find Full Text PDF

Optical bistability (OB) of Rydberg atoms provides a new, to the best of our knowledge, platform for studying nonequilibrium physics and a potential resource for precision metrology. To date, the observation of Rydberg OB has been limited in free space. Here, we explore cavity-enhanced Rydberg OB with a thermal cesium vapor cell.

View Article and Find Full Text PDF

Whispering gallery mode (WGM) resonators provide an important platform for fine measurement thanks to their small size, high sensitivity, and fast response time. Nevertheless, traditional methods focus on tracking single-mode changes for measurement, and a great deal of information from other resonances is ignored and wasted. Here, we demonstrate that the proposed multimode sensing contains more Fisher information than single mode tracking and has great potential to achieve better performance.

View Article and Find Full Text PDF

We fabricate and characterize a hybrid quantum device that consists of five gate-defined double quantum dots (DQDs) and a high-impedance NbTiN transmission resonator. The controllable interactions between DQDs and the resonator are spectroscopically explored by measuring the microwave transmission through the resonator in the detuning parameter space. Utilizing the high tunability of the system parameters and the high cooperativity ( > 17.

View Article and Find Full Text PDF

Quantum error correction (QEC) aims to protect logical qubits from noises by using the redundancy of a large Hilbert space, which allows errors to be detected and corrected in real time. In most QEC codes, a logical qubit is encoded in some discrete variables, for example photon numbers, so that the encoded quantum information can be unambiguously extracted after processing. Over the past decade, repetitive QEC has been demonstrated with various discrete-variable-encoded scenarios.

View Article and Find Full Text PDF

Single atoms are interesting candidates for studying quantum optics and quantum information processing. Recently, trapping and manipulation of single atoms using tight optical dipole traps has generated considerable interest. Here we report an experimental investigation of the dynamics of atoms in a modified optical dipole trap with a backward propagating dipole trap beam, where a change in the two-atom collision rate by six times has been achieved.

View Article and Find Full Text PDF

Synthetic photonic materials exploiting the quantum concept of parity-time (PT) symmetry lead to an emerging photonic paradigm-non-Hermitian photonics, which is revolutionizing the photonic sciences. The non-Hermitian photonics dealing with the interplay between gain and loss in PT synthetic photonic material systems offers a versatile platform for advancing microlaser technology. However, current PT-symmetric microcavity laser systems only manipulate imaginary parts of the refractive indices, suffering from limited laser spectral bandwidth.

View Article and Find Full Text PDF

The transportation of photons and phonons typically obeys the principle of reciprocity. Breaking reciprocity of these bosonic excitations will enable the corresponding nonreciprocal devices, such as isolators and circulators. Here, we use two optical modes and two mechanical modes in a microresonator to form a four-mode plaquette via radiation pressure force.

View Article and Find Full Text PDF

The mode-locked microcomb offers a unique and compact solution for photonics applications, ranging from the optical communications, the optical clock, optical ranging, the precision spectroscopy, novel quantum light source, to photonic artificial intelligence. However, the photonic micro-structures are suffering from the perturbations arising from environment thermal noises and also laser-induced nonlinear effects, leading to the frequency instability of the generated comb. Here, a universal mechanism for fully stabilizing the microcomb is proposed and experimentally verified.

View Article and Find Full Text PDF