Publications by authors named "Chang-Jun Bae"

Geopolymers exhibit broad application prospects, including construction and radiation shielding, which require excellent mechanical performances. However, investigations on the nature of geopolymerization reactions and their consequential impact on mechanical performance are still vague. In this study, the effect of the major factors of Si/Al ratio and curing time on the geopolymerization reaction and flexural strength were studied based on the microstructure evolution and chemical bonding formation analyzed using the SEM, FTIR, peak deconvolution, and XRD methods.

View Article and Find Full Text PDF

PEEK (poly ether ether ketone) materials printed using FFF 3D printing have been actively studied on applying electronic devices in satellites owing to their excellent light weight and thermal resistance. However, the PEEK FFF process generated cavities inside due to large shrinkage has degraded both mechanical integrity and printing reliability. Here, we have investigated the correlations between nozzle temperatures and PEEK printing behaviors such as the reliability of printed line width and surface roughness.

View Article and Find Full Text PDF

Ceramic additive manufacturing (C-AM) is highlighted as a technology that can overcome the inherent limitations of ceramics such as processability and formability. This process creates a structure by slicing a 3D model and stacking ceramic materials layer-by-layer without mold or machining. C-AM is a technology suitable for the era of multiple low-volume because it is more flexible than conventional methods for shape complexity and design modification.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is known to induce alterations of mitochondrial function such as elevation of oxidative stress and activation of apopotosis. The aim of this study was to investigate the effects of human Presenilin 2 mutant (hPS2m) overexpression on the γ-secretase complex in the mitochondrial fraction. To achieve this, alterations of γ-secretase complex expression and activity were detected in the mitochondrial fraction derived from brains of NSE/hPS2m Tg mice and Non-Tg mice.

View Article and Find Full Text PDF

NF-E2-related factor 2 (Nrf2) has been demonstrated to be a key transcription factor regulating the anti-inflammatory genes including heme oxygenase-1 (HO-1) in experimental sepsis models. Based on the fact that 3,4,5-trihydorxycinnamic acid (THC) has been reported to possess anti-inflammatory properties in BV2 microglial cells, the possible effects of THC and its underlying mechanism was examined against lipopolysaccharide (LPS)-induced RAW 264.7 cell culture and septic mouse models.

View Article and Find Full Text PDF

The drug resistance of microorganisms isolated from laboratory animals never treated with antibiotics is being reported consistently, while the number of laboratory animals used in medicine, pharmacy, veterinary medicine, agriculture, nutrition, and environmental and health science has increased rapidly in Korea. Therefore, this study examined the development of antimicrobial resistance in bacteria isolated from laboratory animals bred in Korea. A total of 443 isolates (7 species) containing 5 Sphingomonas paucimobilis, 206 Escherichia coli, 60 Staphylococcus aureus, 15 Staphylococcus epidermidis, 77 Enterococcus faecalis, 27 Citrobacter freundii, 35 Acinetobacter baumannii were collected from the nose, intestine, bronchus and reproductive organs of ICR mice and SD rats.

View Article and Find Full Text PDF

Although various derivatives of caffeic acid have been reported to possess a wide variety of biological activities such as neuronal protection against excitotoxicity and anti-inflammatory property, the biological activity of 3,4,5-trihydroxycinnamic acid (THC), a derivative of hydroxycinnamic acids, has not been clearly examined. The objective of the present study is to evaluate the anti-inflammatory effects of THC on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. THC significantly suppressed LPS-induced excessive production of nitric oxide (NO) and expression of iNOS, which is responsible for the production of iNOS.

View Article and Find Full Text PDF

Pen-2 is a key regulator of the γ-secretase complex, which is involved in the production of the amyloid β (Aβ)-42 peptides, which ultimately lead to Alzheimer's disease (AD). While Pen-2 has been studied in vitro, Pen-2 function in vivo in the brains of transgenic (Tg) mice overexpressing human Pen-2 (hPen-2) protein has not been studied. This study aimed to determine whether Pen-2 overexpression could regulate the AD-like phenotypes in Tg mice.

View Article and Find Full Text PDF

GATA binding protein 3 (GATA3) is a key molecule regulating the balance in the ratio of type 1 helper T (Th1) cells to type 2 helper T (Th2) cells, which is thought to be indicative of the pathogenesis of allergic diseases such as asthma and atopic dermatitis. The aim of this study was to investigate the role of GATA3 in allergic skin inflammation. Transgenic (Tg) mice overexpressing human GATA3 (hGATA3) were produced by the microinjection of pCMV/hGATA3 constructs into fertilized mouse eggs.

View Article and Find Full Text PDF

Synaptophysin is a synaptic vesicle glycoprotein involved in the regulation process for neurotransmitter release, which is distributed throughout neuroendocrine cells and all neurons in the brain and spinal cord. In an effort to determine whether amyloid β (Aβ)-42 peptides could influence the quantity and biochemical properties of synaptophysin, alterations in the levels of the synaptophysin protein in various soluble fractions were detected in the brains of four genotypes of transgenic mice (Tg) including Non-Tg, neuron-specific enolase (NSE)-hPS2m, NSE-hAPPsw and hAPPsw/hPS2m double Tg mice. Among the four genotypes of Tg mice, the highest levels of Aβ-42 peptides were noted in hAPPsw/hPS2m, followed by NSE-hAPPsw, NSE-hPS2m and Non-Tg mice.

View Article and Find Full Text PDF

The insulin signaling pathway, involving protein kinase B (PKB) and mitogen-activated protein kinase (MAPK), mediates the biological response to insulin and several growth factors and cytokines. To investigate the correlation between glucose transporter (Glut) biosynthesis and the insulin signaling pathway activated by novel compounds of Liriope platyphylla (LP9M80-H), alterations in Glut and key protein expression in the insulin signaling pathway were analyzed in the liver and brain of ICR mice treated with LP9M80-H. An in vitro assay showed that the highest level of insulin concentration was observed in the LP9M80-H-treated group, followed by the LP-H, LP-M, LP-E, and LP9M80-C-treated groups.

View Article and Find Full Text PDF

Microarray-based comparative genomic hybridization (array CGH) is a high-resolution and comprehensive method for detecting both genome-wide and chromosome-specific copy-number imbalance. We have developed an array CGH analysis system (consisting of an array CGH chip plus its exclusive analysis software) for constitutional genetic diagnosis and have evaluated the suitability of our system for molecular diagnosis using pre- and postnatal clinical samples. In a blind study, each of the 264 sample karyotypes identified by array CGH analysis was consistent with that identified by traditional karyotype analysis--with one exception, case (47, XXX)--and we were able to identify origins, such as small supernumerary marker chromosomes, which cannot be determined by conventional cytogenetics.

View Article and Find Full Text PDF

Hydroxyapatite (HA)/poly(epsilon-caprolactone) (PCL) composite scaffolds were fabricated using a combination of the extrusion and bi-axial lamination processes. Firstly, HA/PCL composites with various HA contents (0, 50, 60, 70 wt%) were prepared by mixing the HA powders and the molten PCL at 100 degrees C and then extruded through an orifice with dimensions of 600 x 600 microm to produce HA/PCL composite fibers. Isobutyl methacrylate (IBMA) polymer fiber was also prepared in a similar manner for use as a fugitive material.

View Article and Find Full Text PDF

A combination of bi-axial machining and lamination was used to fabricate macrochanneled poly (epsilon-caprolactone) (PCL)/hydroxyapatite (HA) scaffolds. Thermoplastic PCL/HA sheets with a thickness of 1 mm, consisting of a 40 wt% PCL polymer and 60 wt% HA particles, were bi-axially machined. The thermoplastic PCL/HA exhibited an excellent surface finish with negligible tearing of the PCL polymer and pull-out of the HA particles.

View Article and Find Full Text PDF

Hydroxyapatite (HA) macrochanneled porous scaffolds, with a controlled pore structure, were fabricated via a combination of the extrusion and lamination processes. The scaffold was architectured by aligning and laminating the extruded HA and carbon filaments. The macrochannel pores were formed by removing the carbon filaments after thermal treatments (binder removal and sintering).

View Article and Find Full Text PDF

Fluorapatite (FA)-collagen composites were synthesized via a biomimetic coprecipitation method in order to improve the structural stability and cellular responses. Different amounts of ammonium fluoride (NH4F), acting as a fluorine source for FA, were added to the precipitation of the composites. The precipitated composites were freeze-dried and isostatically pressed in a dense body.

View Article and Find Full Text PDF

The biocompatibility of zirconia-alumina (ZA) nano-composites in load-bearing applications such as dental/orthopedic implants was significantly enhanced by the addition of bioactive HA. The ZA matrix was composed of nano-composite powder obtained from the Pechini process and had higher flexural strength than conventionally mixed zirconia-alumina composite. Because the ZA nano-composite powder effectively decreased the contact area between HA and zirconia for their reaction during the sintering process, the HA-added ZA nano-composites contained biphasic calcium phosphates (BCP) of HA/TCP and had higher flexural strength than conventionally mixed ZA-HA composite.

View Article and Find Full Text PDF

Fluor-hydroxyapatite (FHA) film was coated on a zirconia (ZrO(2)) substrate by a sol-gel method. An appropriate amount of F ions was incorporated into the hydroxyapatite (HA) during the preparation of the sols. The apatite phase began to crystallize after heat treatment at 400 degrees C, and increased in intensity above 500 degrees C.

View Article and Find Full Text PDF

Highly porous zirconia (ZrO(2)) bone scaffolds, fabricated by a replication technique using polymeric sponge, were coated with hydroxyapatite (HA). To prevent the chemical reactions between ZrO(2) and HA, an intermediate fluorapatite (FA) layer was introduced. The strength of the porous ZrO(2) was higher than that of pure HA by a factor of 7, suggesting the feasibility of ZrO(2) porous scaffolds as load-bearing part applications.

View Article and Find Full Text PDF