Optical anisotropy, which is an intrinsic property of many materials, originates from the structural arrangement of molecular structures, and to date, various polarization-sensitive imaging (PSI) methods have been developed to investigate the nature of anisotropic materials. In particular, the recently developed tomographic PSI technologies enable the investigation of anisotropic materials through volumetric mappings of the anisotropy distribution of these materials. However, these reported methods mostly operate on a single scattering model, and are thus not suitable for three-dimensional (3D) PSI imaging of multiple scattering samples.
View Article and Find Full Text PDFThe ascomycete fungus infects lepidopteran larvae and pupae and forms characteristic fruiting bodies. Owing to its immune-enhancing effects, the fungus has been used as a medicine. For industrial application, this fungus can be grown on geminated soybeans as an alternative protein source.
View Article and Find Full Text PDFProtein microarrays are miniaturized two-dimensional arrays, incorporating thousands of immobilized proteins, typically printed in minute amounts on functionalized solid substrates, which can be analyzed in a high-throughput fashion. Irreproducibility of the printing techniques adopted, resulting in inconsistently and nonuniformly deposited microscopic spots, nonuniform signal intensities from the printed microspots, and significantly high background noise are some of the critical issues that affect protein analysis using traditional protein microarrays. To overcome such issues, in this study, we introduced a novel gold grid pattern-based protein microarray.
View Article and Find Full Text PDFChem Commun (Camb)
February 2016
Here we show the formation of the complex between a DNA aptamer and a single-walled carbon nanotube (SWNT) and its reaction with its target protein. The aptamer, which is specifically bound with thrombin, the target protein in this study, easily wraps and disperses the SWNT by noncovalent π-π stacking.
View Article and Find Full Text PDFMagnetic nanoparticles are widely used in bioapplications such as imaging and targeting tool. Their magnetic nature allows for the more efficient bioapplications by an external field gradient. However their combined effects have not yet been extensively characterized.
View Article and Find Full Text PDFHarpins are heat-stable, glycine-rich type III-secreted proteins produced by plant pathogenic bacteria, which cause a hypersensitive response (HR) when infiltrated into the intercellular space of tobacco leaves; however, the biochemical mechanisms by which harpins cause plant cell death remain unclear. In this study, we determined the biochemical characteristics of HpaG, the first harpin identified from a Xanthomonas species, under plant apoplast-like conditions using electron microscopy and circular dichroism spectroscopy. We found that His(6)-HpaG formed biologically active spherical oligomers, protofibrils, and beta-sheet-rich fibrils, whereas the null HR mutant His(6)-HpaG(L50P) did not.
View Article and Find Full Text PDFWe sequenced an approximately 29-kb region from Xanthomonas axonopodis pv. glycines that contained the Hrp type III secretion system, and we characterized the genes in this region by Tn3-gus mutagenesis and gene expression analyses. From the region, hrp (hypersensitive response and pathogenicity) and hrc (hrp and conserved) genes, which encode type III secretion systems, and hpa (hrp-associated) genes were identified.
View Article and Find Full Text PDF