Radiotherapy is an integral part for the treatment of head and neck cancer (HNC), while radioresistance is a major cause leads to treatment failure. GDF15, a member of the TGF-β superfamily, is hypothesized to participate in various types of homeostasis. However, the potential role of this molecule in regulation of radiosensitivity remains unclear.
View Article and Find Full Text PDFThe areca nut is a known carcinogen that causes oral cancer in individuals in Southeast Asia, but the molecular mechanism that leads to this malignancy is still unclear. To mimic the habit of areca nut chewing, our laboratory has established four oral cancer cell sublines (SAS, OECM1, K2, C9), which have been chronically exposed to areca nut extract (ANE). To elucidate the molecular basis of areca nut-induced oral carcinogenesis, the differential proteomes between oral cancer cells and the ANE-treated sublines were determined using isobaric mass tag (iTRAQ) labeling and multidimensional liquid chromatography-mass spectrometry (LC-MS/MS).
View Article and Find Full Text PDFOral cancer is one of the most frequent malignant diseases worldwide, and areca nut is a primary carcinogen causing this cancer in Southeast Asia. Previous studies to examine the effects of this carcinogen often used short-term and high-dose treatment of area nut extract as a research model, which do not recapitulate the conditions of patients with long-term and habitual use of this substance. To approach authentic mechanism of areca nut-induced oral carcinogenesis that occurs in human, we established four isogenic sublines of oral cells which were chronic exposed to areca nut extract.
View Article and Find Full Text PDFBackground: MicroRNA-196 (miR-196), which is highly up-regulated in oral cancer cells, has been reported to be aberrantly expressed in several cancers; however, the significance of miR-196 in oral cancer has not yet been addressed.
Methods: Cellular functions in response to miR-196 modulation were examined, including cell growth, migration, invasion and radio/chemosensitivity. Algorithm-based studies were used to identify the regulatory target of miR-196.