Publications by authors named "Chang Shen Qiu"

Although TWIK-related spinal cord K (TRESK) channel is expressed in all primary afferent neurons in trigeminal ganglia (TG) and dorsal root ganglia (DRG), whether TRESK activity regulates trigeminal pain processing is still not established. Dominant-negative TRESK mutations are associated with migraine but not with other types of pain in humans, suggesting that genetic TRESK dysfunction preferentially affects the generation of trigeminal pain, especially headache. Using TRESK global knock-out mice as a model system, we found that loss of TRESK in all TG neurons selectively increased the intrinsic excitability of small-diameter nociceptors, especially those that do not bind to isolectin B4 (IB4).

View Article and Find Full Text PDF

Migraine and other primary headache disorders affect a large population and cause debilitating pain. Establishing animal models that display behavioral correlates of long-lasting and ongoing headache, the most common and disabling symptom of migraine, is vital for the elucidation of disease mechanisms and identification of drug targets. We have developed a mouse model of headache, using dural application of capsaicin along with a mixture of inflammatory mediators (IScap) to simulate the induction of a headache episode.

View Article and Find Full Text PDF

Background: Interstitial cystitis/painful bladder syndrome (IC/PBS), is a severely debilitating chronic condition that is frequently unresponsive to conventional pain medications. The etiology is unknown, however evidence suggests that nervous system sensitization contributes to enhanced pain in IC/PBS. In particular, central nervous system plasticity of glutamatergic signaling involving NMDA and metabotropic glutamate receptors (mGluRs) has been implicated in a variety of chronic pain conditions.

View Article and Find Full Text PDF

Activation of extracellular signal-regulated kinases (ERK) 1/2 in dorsal horn neurons is important for the development of somatic hypersensitivity and spinal central sensitization after peripheral inflammation. However, data regarding the roles of spinal ERK1/2 in the development of visceral hyperalgesia are sparse. Here we studied the activation of ERK1/2 in the lumbosacral spinal cord after innocuous and noxious distention of the inflamed (cyclophosphamide-treated) and noninflamed urinary bladder in mice.

View Article and Find Full Text PDF

The ionotropic glutamate receptor subunit, GluK1 (GluR5), is expressed in many regions of the nervous system related to sensory transmission. Recently, a selective ligand for the GluK1 receptor, MSVIII-19 (8,9-dideoxy-neodysiherbaine), was synthesized as a derivative of dysiherbaine, a toxin isolated from the marine sponge Lendenfeldia chondrodes. MSVIII-19 potently desensitizes GluK1 receptors without channel activation, rendering it useful as a functional antagonist.

View Article and Find Full Text PDF

The zinc finger transcription factor Egr-1 is critical for coupling extracellular signals to changes in cellular gene expression. In the hippocampus and amygdala, two major central regions for memory formation and storage, Egr-1 is up-regulated by long-term potentiation (LTP) and learning paradigms. Using Egr-1 knockout mice, we showed that Egr-1 was selectively required for late auditory fear memory while short term, trace and contextual memory were not affected.

View Article and Find Full Text PDF

Identifying higher brain central region(s) that are responsible for the unpleasantness of pain is the focus of many recent studies. Here we show that direct stimulation of the anterior cingulate cortex (ACC) in mice produced fear-like freezing responses and induced long-term fear memory, including contextual and auditory fear memory. Auditory fear memory required the activation of N-methyl-D-aspartate (NMDA) receptors in the amygdala.

View Article and Find Full Text PDF

Different kainate receptor (KAR) subtypes contribute to the regulation of both excitatory and inhibitory transmission. However, no study has reported a role for KAR subtypes in behavioral responses to persistent pain and fear memory. Here we show that responses to capsaicin or inflammatory pain were significantly reduced in mice lacking glutamate receptor 5 (GluR5) but not GluR6 subunits.

View Article and Find Full Text PDF

We developed a microelectroporation method for the transfer of genes into neurons in the cerebral cortex of adult rodents, both rats and mice. We selectively expressed either green-fluorescent protein (GFP) or a Ca2+-binding deficient calmodulin (CaM) mutant in the anterior cingulate cortex (ACC). In mice that expressed GFP, positive neuronal cell bodies were found specifically at the injection site in the ACC.

View Article and Find Full Text PDF

Adenylyl cyclase types 1 (AC1) and 8 (AC8), the two major calmodulin-stimulated adenylyl cyclases in the brain, couple NMDA receptor activation to cAMP signaling pathways. Cyclic AMP signaling pathways are important for many brain functions, such as learning and memory, drug addiction, and development. Here we show that wild-type, AC1, AC8, or AC1&8 double knockout (DKO) mice were indistinguishable in tests of acute pain, whereas behavioral responses to peripheral injection of two inflammatory stimuli, formalin and complete Freund's adjuvant, were reduced or abolished in AC1&8 DKO mice.

View Article and Find Full Text PDF

The ability to remember potential dangers in an environment is necessary to the survival of animals and humans. The cyclic AMP responsive element binding protein (CREB) is a key transcription factor in synaptic plasticity and memory consolidation. We have found that in CaMKIV(-/-) mice--which are deficient in a component of the calcium calmodulin-dependent protein kinase (CaMK) pathway, a major pathway of CREB activation--fear memory, but not persistent pain, was significantly reduced.

View Article and Find Full Text PDF

Objectives: We investigated the effects of short-term tezosentan treatment on cardiac function, pulmonary edema and long-term evolution of heart failure (HF) in a rat model of myocardial infarction (MI).

Background: Endothelin (ET) may play a major role in the progression from MI to HF. Tezosentan is a new dual ET(A)/ET(B) receptor antagonist.

View Article and Find Full Text PDF