The discovery, of a series of 2-Cl-5-heteroaryl-benzamide antagonists of the P2X(7) receptor via parallel medicinal chemistry is described. Initial analogs suffered from poor metabolic stability and low Vd(ss). Multi parametric optimization led to identification of pyrazole 39 as a viable lead with excellent potency and oral bioavailability.
View Article and Find Full Text PDFHigh throughput screening (HTS) of our compound file provided an attractive lead compound with modest P2X(7) receptor antagonist potency and high selectivity against a panel of receptors and channels, but also with high human plasma protein binding and a predicted short half-life in humans. Multi-parameter optimization was used to address the potency, physicochemical and pharmacokinetic properties which led to potent P2X(7)R antagonists with good disposition properties. Compound 33 (CE-224,535) was advanced to clinical studies for the treatment of rheumatoid arthritis.
View Article and Find Full Text PDFThere is a critical need for safer and more convenient treatments for organ transplant rejection and autoimmune disorders such as rheumatoid arthritis. Janus tyrosine kinases (JAK1, JAK3) are expressed in lymphoid cells and are involved in the signaling of multiple cytokines important for various T cell functions. Blockade of the JAK1/JAK3-STAT pathway with a small molecule was anticipated to provide therapeutic immunosuppression/immunomodulation.
View Article and Find Full Text PDFThrough the use of computational modeling, a series of pyrimidinetrione-based inhibitors of MMP-13 was designed based on a lead inhibitor identified through file screening. Incorporation of a biaryl ether moiety at the C-5 position of the pyrimidinetrione ring resulted in a dramatic enhancement of MMP-13 potency. Protein crystallography revealed that this moiety binds in the S(1)(') pocket of the enzyme.
View Article and Find Full Text PDFBecause of its requirement for signaling by multiple cytokines, Janus kinase 3 (JAK3) is an excellent target for clinical immunosuppression. We report the development of a specific, orally active inhibitor of JAK3, CP-690,550, that significantly prolonged survival in a murine model of heart transplantation and in cynomolgus monkeys receiving kidney transplants. CP-690,550 treatment was not associated with hypertension, hyperlipidemia, or lymphoproliferative disease.
View Article and Find Full Text PDF