The last two decades have witnessed a dramatic increase in research on low-dimensional material with exceptional optoelectronic properties. While low-dimensional materials offer exciting new opportunities for imaging, their integration in practical applications has been slow. In fact, most existing reports are based on single-pixel devices that cannot rival the quantity and quality of information provided by massively parallelized mega-pixel imagers based on complementary metal-oxide semiconductor (CMOS) readout electronics.
View Article and Find Full Text PDFBackground: this study aimed to conduct a biological assessment of the potential exposure to carcinogenic substances in current semiconductor workers.
Methods: A cross-sectional study was conducted on 306 semiconductor workers. The assessed biomarkers were as follows: (benzene) urine S-phenylmercapturic, trans,trans-muconic acid, blood benzene; (trichloroethylene) urine trichloroacetic acid; (2-ethoxyethanol) 2-ethoxyacetic acid; (arsine) urine arsenic3+, arsenic5+, monomethylarsonic, dimethylarsinic acid, arsenobetaine; (shift work) 6-hydroxymelatonin; (smoking) cotinine, and (radiation).
Metformin is one of the most effective therapies for treating type 2 diabetes and has been shown to also attenuate aging and age-related disorders. In this study, we explored the relationship between metformin and DNA damage repair in ionizing radiation (IR)-induced damage of human aortic endothelial cells (HAECs). Metformin treatment suppressed IR-induced senescence phenotypes, such as increased senescent-associated β-galactosidase (SA β-gal) activity and decreased tube formation and proliferation.
View Article and Find Full Text PDFCapabilities for continuous monitoring of pressures and temperatures at critical skin interfaces can help to guide care strategies that minimize the potential for pressure injuries in hospitalized patients or in individuals confined to the bed. This paper introduces a soft, skin-mountable class of sensor system for this purpose. The design includes a pressure-responsive element based on membrane deflection and a battery-free, wireless mode of operation capable of multi-site measurements at strategic locations across the body.
View Article and Find Full Text PDFThe cardiotoxicity of various anticancer therapies, including radiotherapy, can lead to cardiovascular complications. These complications can range from damaging cardiac tissues within the irradiation field to increasing the long-term risks of developing heart failure, coronary artery disease, and myocardial infarction. We analyzed radiation-induced metabolites capable of mediating critical biological processes, such as inflammation, senescence, and apoptosis.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor gamma (PPARɣ) agonists exert powerful anticancer effects by suppressing tumor growth. In this study, we developed PPZ023 (1-(2-(ethylthio)benzyl)-4-(2-methoxyphenyl)piperazine), a novel PPAR ligand candidate, and investigated the underlying signaling pathways in both non-small-cell lung cancer (NSCLC) and radio-resistant NSCLC cells. To identify whether PPZ023 has anticancer effects in NSCLC and radioresistant NSCLC cells, we performed WST-1, LDH, Western blot, and caspase-3 and -9 activity assays.
View Article and Find Full Text PDFIn this study, we proposed a strategy to fabricate vertically stacked subpixel (VSS) micro-light-emitting diodes (μ-LEDs) for future ultrahigh-resolution microdisplays. At first, to vertically stack the LED with different colors, we successfully adopted a bonding-interface-engineered monolithic integration method using SiO2/SiNx distributed Bragg reflectors (DBRs). It was found that an intermediate DBR structure could be used as the bonding layer and color filter, which could reflect and transmit desired wavelengths through the bonding interface.
View Article and Find Full Text PDFProcollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD3), a membrane-bound homodimeric enzyme, hydroxylates lysyl residues in collagen-like peptides; however, its role in lung cancer is unknown. This study aimed to investigate the role of PLOD3 as a pro-metastatic factor and to elucidate the underlying mechanism. First, we experimentally confirmed the release of PLOD3 in circulation in animal models, rendering it a potential serum biomarker for lung cancer in humans.
View Article and Find Full Text PDFHuman embryonic stem cell-derived mesenchymal stem cells (hE-MSCs) have greater proliferative capacity than other human mesenchymal stem cells (hMSCs), suggesting that they may have wider applications in regenerative cellular therapy. In this study, to uncover the anti-senescence mechanism in hE-MSCs, we compared hE-MSCs with adult bone marrow (hBM-MSCs) and found that hepatocyte growth factor (HGF) was more abundantly expressed in hE-MSCs than in hBM-MSCs and that it induced the transcription of RAD51 and facilitated its SUMOylation at K70. RAD51 induction/modification by HGF not only increased telomere length but also increased mtDNA replication, leading to increased ATP generation.
View Article and Find Full Text PDFIn general, to realize full color, inorganic light-emitting diodes (LEDs) are diced from respective red-green-blue (RGB) wafers consisting of inorganic crystalline semiconductors. Although this conventional method can realize full color, it is limited when applied to microdisplays requiring high resolution. Designing a structure emitting various colors by integrating both AlGaInP-based and InGaN-based LEDs onto one substrate could be a solution to achieve full color with high resolution.
View Article and Find Full Text PDFClinical irradiation therapy for cancer could increase the risk of localized wound complications. This study was conducted to evaluate the potential use of a chitosan microparticle-pluronic F127 (CSMP-PF) hydrogel complex containing bioactive molecules, substance P and transforming growth factor-β1, to regeneratively repair skin damaged by local ionizing radiation (IR). The BALB/c/bkl mice were locally irradiated to their limbs with a single 40 Gy dose of Co-60 γ rays to induce a skin injury.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs), which are multipotent and have self-renewal ability, support the regeneration of damaged normal tissue. A number of external stimuli promote migration of MSCs into peripheral blood and support their participation in wound healing. In an attempt to harness the potential beneficial effects of such external stimuli, we exposed human MSCs (hMSCs) to one such stimulus-low-dose ionizing radiation (LDIR)-and examined their biological properties.
View Article and Find Full Text PDFThree dose calibration curves for biodosimetry such as dicentric chromosome assay, fluorescence hybridization (FISH) assay for translocation, and micronuclei (MNs) in binucleated cell assay were established after exposure to ionizing radiation. Peripheral blood lymphocyte samples obtained from healthy donors were irradiated with Co source at a dose rate of 0.5 Gy/min to doses of 0.
View Article and Find Full Text PDFIn this study, we have fabricated a blue-green color-tunable monolithic InGaN/GaN LED having a multi-junction structure with three terminals. The device has an n-p-n structure consisting of a green and a blue active region, i.e.
View Article and Find Full Text PDFThe 3-dimensional (3D) printing technologies, referred to as additive manufacturing (AM) or rapid prototyping (RP), have acquired reputation over the past few years for art, architectural modeling, lightweight machines, and tissue engineering applications. Among these applications, tissue engineering field using 3D printing has attracted the attention from many researchers. 3D bioprinting has an advantage in the manufacture of a scaffold for tissue engineering applications, because of rapid-fabrication, high-precision, and customized-production, etc.
View Article and Find Full Text PDFExcess exposure to ionizing radiation generates reactive oxygen species and increases the cellular inflammatory response by modifying various metabolic pathways. However, an investigation of metabolic perturbations and organ-specific responses based on the amount of radiation during the acute phase has not been conducted. In this study, high-resolution magic-angle-spinning (HR-MAS) NMR and solution NMR-based metabolic profiling were used to investigate dose-dependent metabolic changes in multiple organs and tissues--including the jejunum, spleen, liver, and plasma--of rats exposed to X-ray radiation.
View Article and Find Full Text PDFWe employed the primary cell model system as a first step toward establishing a method to assess the influence of ionizing radiation by using a combination of common and abundant metabolites. We applied X-ray irradiation amounts of 0, 1, and 5 Gy to the cells that were harvested 24, 48, or 72 h later, and profiled metabolites by 2D-NMR spectroscopy to sort out candidate molecules that could be used to distinguish the samples under different irradiation conditions. We traced metabolites stemming from the input ¹³C-glucose, identified twelve of them from the cell extracts, and applied statistical analysis to find out that all the metabolites, including glycine, alanine, and gluatamic acid, increased upon irradiation.
View Article and Find Full Text PDFPreviously, we found that the delivery of mouse ES (mES) cell-derived proteins to adult fibroblasts enables the full reprogramming of these cells, converting them to mouse pluripotent stem cells (protein-iPS cells) without transduction of defined factors. During reprogramming, global gene expression and epigenetic status such as DNA methylation and histone modifications convert from somatic to ES-equivalent status. mES cell extract-derived iPS cells are biologically and functionally indistinguishable from mES cells in its potential in differentiation both in vitro and in vivo.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
October 2014
Natural and synthetic polymers, in particular those that are conductive, are of great interest in the field of tissue engineering and the pursuit of biomimetic extracellular matrix (ECM) structures for adhesion, proliferation, and differentiation of cells. In the present study, natural chitin and conductive polyaniline (PANi) blended solutions were electrospun to produce biodegradable and conductive biomimetic nanostructured scaffolds. The chitin/PANi (Chi-PANi) nanofibrous materials were characterized using field emission scanning electron microscopy, Fourier transform-infrared spectroscopy, wettability analysis, mechanical testing, and electrical conductivity measurements using a 4-point probe method.
View Article and Find Full Text PDFRadiation exposure is a threat to public health because it causes many diseases, such as cancers and birth defects, due to genetic modification of cells. Compared with the past, a greater number of people are more frequently exposed to higher levels of radioactivity today, not least due to the increased use of diagnostic and therapeutic radiation-emitting devices. In this study, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS)-based metabolic profiling was used to investigate radiation- induced metabolic changes in human fibroblasts.
View Article and Find Full Text PDFIn this study, we produce InGaN/GaN microcolumn LED (MC-LED) arrays having nonpolar metal sidewall contacts using a top-down method, where the metal contacts only with the sidewall of the columnar LEDs with an open top for transparency. The trapezoidal profile of the as-etched columns was altered to a rectangular profile through KOH treatment, exposing the nonpolar sidewalls. While the MC-LED with no treatment emitted no light because of the etch-damaged region, the MC-LEDs with KOH treatment exhibited much improved the electrical properties with the much higher shunt resistance due to the removal of the etch-damaged region.
View Article and Find Full Text PDFElectrospinning of pure chitosan was employed to obtain a nanofibrous hemostatic material. Owing to the water-solubility of the resulting acidic chitosan nanofibers, the optimum neutralization conditions were identified by testing various alkaline solutions, so that an insoluble material could be achieved. The pore size and thickness of the neutralized chitosan nanofibers mat could be controlled using ultra-sonication.
View Article and Find Full Text PDFIn this study we implemented a new assay using a nested real-time polymerase chain reaction (PCR) to detect radiation-induced common deletion (CD) in mitochondrial DNA (mtDNA) of human peripheral lymphocytes. A standard curve for real-time PCR was established by applying a plasmid DNA containing human normal mtDNA or mutated mtDNA. Human peripheral lymphocyte DNA was amplified and quantified by real-time PCR using primer sets for total damaged or mutated mtDNA, plus probes labeled with the fluorescent dyes.
View Article and Find Full Text PDF