Purpose: This study aimed to compare the accuracy of the conventional facebow system and the newly developed POP (PNUD (Pusan National University Dental School) Occlusal Plane) bow system for occlusal plane transfer in asymmetric ear position.
Materials And Methods: Two dentists participated in this study, one was categorized as Experimenter 1 and the other as Experimenter 2 based on their clinical experience with the facebow (1F, 2F) and POP bow (1P, 2P) systems. The vertical height difference between the two ears of the phantom model was set to 3 mm.
Purpose: This prospective clinical study was conducted to evaluate the clinical usefulness of the freely detachable zirconia ball- and spring-retained implant prosthesis (BSRP) through a comparative analysis of screw- and cement-retained implant prosthesis (SCRP).
Materials And Methods: A multi-center, randomized, prospective clinical study evaluating the clinical usefulness of the detachable zirconia ball- and spring-retained implant prostheses was conducted. Sixty-four implant prostheses in 64 patients were examined.
Purpose: This study aims to clinically compare the fitness and trueness of zirconia crowns fabricated by different combinations of open CAD-CAM systems.
Materials And Methods: Total of 40 patients were enrolled in this study, and 9 different zirconia crowns were prepared per patient. Each crown was made through the cross-application of 3 different design software (EZIS VR, 3Shape Dental System, Exocad) with 3 different processing devices (Aegis HM, Trione Z, Motion 2).
This study aimed to compare two methods of crosslinking collagen type I on implanted titanium surfaces, that is, using glutaraldehyde (GA) or gamma-rays (GRs), in a beagle dog model. For in vivo experiments, implants were allocated to three groups and applied to mandibular bone defects in beagle dogs; Group SLA; non-treated Sandblasted, large grit, acid-etched (SLA) implants, Group GA; SLA implants coated with GA crosslinked collagen type I, Group GR; SLA surface implants coated with collagen type I and crosslinked using 25 kGy of Co gamma radiation. New bone μCT volumes were obtained, and histologic and histometric analyses were performed in regions of interest.
View Article and Find Full Text PDFThe aim of this study is to investigate the effect of non-thermal atmospheric pressure plasma (NTP) on retentive strength (RS) between the zirconia crown and the titanium implant abutment using self-adhesive resin cement. Surface free energy (SFE) was calculated on 24 cube-shaped zirconia blocks, and RS was measured on 120 zirconia crown-titanium abutment assemblies bonded with G-CEM LinkAce. The groups were categorized according to the zirconia surface treatment as follows: Control (no surface treatment), NTP, Si (Silane), NTP + Si, Pr (Z-Prime Plus), and NTP + Pr.
View Article and Find Full Text PDFStatement Of Problem: The fit and performance of prostheses fabricated using various computer-aided design and computer-aided manufacturing (CAD-CAM) systems have been evaluated. However, most studies were conducted in vitro, and relatively few have addressed gingival parameters and prosthesis fit under clinical conditions.
Purpose: This clinical study aimed to compare the fit of lithium disilicate crowns produced using 3 CAD-CAM systems and evaluate clinical results up to 6 months after delivery.
The purpose of this study was to evaluate the bone regeneration efficacy of an 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked collagen membrane for guided bone regeneration (GBR). A non-cross-linked collagen membrane (Control group), and an EDC-cross-linked collagen membrane (Test group) were used in this study. In vitro, mechanical, and degradation testing and cell studies were performed.
View Article and Find Full Text PDFThe purpose of this study was to investigate the effect of non-thermal atmospheric pressure plasma (NTP) treatment on the sandblasting of mechanical method and zirconia primer of chemical method used to increase the bond strength between zirconia and resin cement. In this study, Y-TZP was divided into 4 groups according to the surface treatment methods as follows: Zirconia primer (Pr), NTP + Zirconia primer (NTP + Pr), Sandblasting + Zirconia primer (Sb + Pr), Sandblasting + NTP + Zirconia primer (Sb + NTP + Pr). Then, two types of resin cement (G-CEM LinkAce and Rely X-U200) were used to measure the shear bond strength (SBS) and they were divided into non-thermal cycling group and thermal cycling group for aging effect.
View Article and Find Full Text PDFMaterials (Basel)
November 2019
The aim of this study was to evaluate the wear properties of resin teeth with different opposing dental restorative materials. One type of resin tooth (Trubyte Biotone) was tested against six types of restorative materials including type III gold alloy (GO), monolithic zirconia (MZ), lithium disilicate glass ceramic (LD), nickel-chromium alloy (NC), feldspathic ceramic (FC), and steatite (ST). Two-body wear tests were performed under a vertical load of 5 kgf and thermo-cycling at 5/55 °C with a total of 120,000 cycles.
View Article and Find Full Text PDFThe purpose of this study was to evaluate the effect of non-thermal atmospheric pressure plasma (NTP) on shear bond strength (SBS) between yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and self-adhesive resin cement. For this study, surface energy (SE) was calculated with cube-shaped Y-TZP specimens, and SBS was measured on disc-shaped Y-TZP specimens bonded with G-CEM LinkAce or RelyX U200 resin cylinder. The Y-TZP specimens were classified into four groups according to the surface treatment as follows: Control (no surface treatment), NTP, Sb (Sandblasting), and Sb + NTP.
View Article and Find Full Text PDFInt J Oral Maxillofac Implants
November 2018
Purpose: The aim of this study was to compare the retentive properties of an attachment with a nylon insert and an attachment with a polyetherketoneketone (PEKK) insert on two-implant mandibular overdentures during simulated masticatory loadings and insertion/removal cycles.
Materials And Methods: Two attachment systems with nylon inserts or PEKK inserts were investigated, including nylon/low, nylon/medium, nylon/high, PEKK/x-low, PEKK/low, PEKK/medium, and PEKK/high. The canine region of edentulous mandibular overdenture models was retained with two implant analogs through two different stud attachments at interimplant angulations of 0 and 20 degrees.
The aim of this in-vitro research was to evaluate the microtensile bond strength in the newly introduced PEKK tooth post with various surface treatments and resin cements. A fiberglass tooth post was included in order to compare it with PEKK as a possible post material. The microtensile bond strengths of the fiberglass post (FRC Postec Plus) and the PEKK post (Pekkton) were tested using three kinds of self-adhesive resin cements (G-CEM LinkAce, Multilink Speed, and RelyX U200) and one self-etching resin cement (PANAVIA F2.
View Article and Find Full Text PDFThe aim of this study was to introduce the newly developed micro-locking implant prosthetic system and to evaluate the resulting its characteristics. To evaluate load-bearing capacity, 25 implants were divided into five groups: external-hexagon connection (EH), internal-octagon connection (IO), internal-hexagon connection (IH), one-body implant (OB), micro-locking implant system (ML). The maximum compressive load was measured using a universal testing machine (UTM) according to the ISO 14801.
View Article and Find Full Text PDFThe appropriate porosity and pore size of barrier membranes were associated with the transportation of biomolecules required for new bone formation and angiogenesis. In this study, we fabricated three-dimensional (3D)-printed resorbable polycaprolactone (PCL) membranes with different porosities (30%, 50%, and 70%) to evaluate the effective pore size for guided bone regeneration (GBR) membranes. To analyze mechanical properties and cytocompatibility, PCL membranes prepared using extrusion-based 3D printing technology were compared in dry and wet conditions and tested in vitro.
View Article and Find Full Text PDFPurpose: This study evaluated the accuracies of different bite registration techniques for implant-fixed prostheses using three dimensional file analysis.
Materials And Methods: Implant fixtures were placed on the mandibular right second premolar, and the first and second molar in a polyurethane model. Aluwax (A), Pattern Resin (P), and Blu-Mousse (B) were used as the bite registration materials on the healing abutments (H) or temporary abutments (T).
Bacterial cellulose (BC) is an excellent biomaterial with many medical applications. In this study, resorbable BC membranes were prepared for guided bone regeneration (GBR) using an irradiation technique for applications in the dental field. Electron beam irradiation (EI) increases biodegradation by severing the glucose bonds of BC.
View Article and Find Full Text PDFThe purpose of this study is to evaluate the effect of three-dimensional preformed titanium membrane (3D-PFTM) to enhance mechanical properties and ability of bone regeneration on the peri-implant bone defect. 3D-PFTMs by new mechanically compressive molding technology and manually shaped- (MS-) PFTMs by hand manipulation were applied in artificial peri-implant bone defect model for static compressive load test and cyclic fatigue load test. In 12 implants installed in the mandibular of three beagle dogs, six 3D-PFTMs, and six collagen membranes (CM) randomly were applied to 2.
View Article and Find Full Text PDFThis study was conducted to evaluate the effect of biphasic calcium phosphate (BCP) coated with reduced graphene oxide (rGO) as bone graft materials on bone regeneration. The rGO-coated BCP bone graft material was fabricatied by mixing rGO and BCP at various concentrations. The surface charge of rGO-coated BCP was measured to be -14.
View Article and Find Full Text PDFThe purpose of this study was to compare bone regeneration and space maintaining ability of three-dimensional (3D) printed bone grafts with conventional biphasic calcium phosphate (BCP). After mixing polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) in a 4:4:2 ratio, PCL/PLGA/β-TCP particulate bone grafts were fabricated using 3D printing technology. Fabricated particulate bone grafts were mixed with atelocollagen to produce collagen-based PCL/PLGA/β-TCP composite block bone grafts.
View Article and Find Full Text PDFIn this study, bisphasic calcium phosphate (BCP) and two types of polysaccharide, carboxymethyl cellulose (CMC) and hyaluronic acid (HyA), were used to fabricate composite block bone grafts, and their physical and biological features and performances were compared and evaluated in vitro and in vivo. Specimens of the following were prepared as 6 mm diameter, 2 mm thick discs; BPC mixed with CMC (the BCP/CMC group), BCP mixed with crosslinked CMC (the BCP/c-CMC group) and BCP mixed with HyA (the BCP/HyA group) and a control group (specimens were prepared using particle type BCP). A scanning electron microscope study, a compressive strength analysis, and a cytotoxicity assessment were conducted.
View Article and Find Full Text PDFThis study was performed to make comparative analysis of the clinical findings between the two different types of the implant-assisted removable partial dentures: removable partial dentures using implant surveyed bridge as an abutment (ISBRPD) and overdenture type of removable partial denture using implant attachment (IARPD). Implant cumulative survival rate, marginal bone resorption, probing depth, peri-implant inflammation, bleeding, plaque, calculus, and complications were evaluated on 24 patients who were treated with implants in conjunction with removable partial denture and have used them for at least 1 year (ISCRPD: = 12; IARPD: = 12). There was no failed implant and all implants were functioning without clinical mobility.
View Article and Find Full Text PDFThis study was conducted to compare 3D-printed polycaprolactone (PCL) and polycaprolactone/β-tricalcium phosphate (PCL/β-TCP) membranes with a conventional commercial collagen membrane in terms of their abilities to facilitate guided bone regeneration (GBR). Fabricated membranes were tested for dry and wet mechanical properties. Fibroblasts and preosteoblasts were seeded into the membranes and rates and patterns of proliferation were analyzed using a kit-8 assay and by scanning electron microscopy.
View Article and Find Full Text PDFPurpose: The purpose of this study was to compare the fit of cast gold crowns fabricated from the conventional and the digital impression technique.
Materials And Methods: Artificial tooth in a master model and abutment teeth in ten patients were restored with cast gold crowns fabricated from the digital and the conventional impression technique. The forty silicone replicas were cut in three sections; each section was evaluated in nine points.
Statement Of Problem: Implant angulation should be considered when selecting an attachment. Some in vitro studies have investigated the relationship between implant angulation and changes in the retention force of the stud attachment, but few studies have evaluated the effect of cyclic loading and repeated cycles of insertion and removal on the stud attachment.
Purpose: The purpose of this in vitro study was to evaluate the effects of implant angulation on the retentive characteristics of overdentures with 2 different stud attachments, an experimental system and O-rings in red and orange, after cyclic loading and repeated insertion and removal cycles.
Purpose: The purpose of this study was to investigate the influence of implant and drill diameters on the stability of implant and bone response.
Materials And Methods: An implant (GS II, Osstem Implant) with a 3.5-mm diameter and drills with three different diameters, differentiating the volume of bone compacted by the implant, were used in this study.