Environ Sci Technol
February 2010
A probabilistic function (integrated source contribution function, ISCF) based on backward air mass trajectory calculation was developed to track sources and atmospheric pathways of polycyclic aromatic hydrocarbons (PAHs) to the Canadian High Arctic station of Alert. In addition to the movement of air masses, the emission intensities at the sources and the major processes of partition, indirect photolysis, and deposition occurring on the way to the Arctic were incorporated into the ISCF. The predicted temporal trend of PAHs at Alert was validated by measured PAH concentrations throughout 2004.
View Article and Find Full Text PDFEnviron Sci Technol
July 2008
A potential receptor influence function (PRIF) model, based on air mass forward trajectory calculations, was applied to simulate the atmospheric transport and outflow of polycyclic aromatic hydrocarbons (PAHs) emitted from China. With a 10 day atmospheric transport time, most neighboring countries and regions, as well as remote regions, were influenced by PAH emissions from China. Of the total annual PAH emission of 114 Gg, 92.
View Article and Find Full Text PDFEnviron Sci Technol
December 2007
The atmospheric outflow of polycyclic aromatic hydrocarbons (PAHs) from Guangdong, China, a region of high PAH emission, was modeled using a potential receptor influence function (PRIF) probabilistic model which was based on a spatially resolved PAH inventory and air mass forward-trajectory calculations. Photochemical degradation and deposition (dry and wet) of PAHs during atmospheric transport were taken into consideration. On average, 48% of the PAHs (by mass) remained in the atmosphere for a transport period of 5 days, staying within the boundary of the source region.
View Article and Find Full Text PDFChanges in concentration profiles of polycyclic aromatic hydrocarbons (PAHs) from emission sources to various environmental media in the Pearl River Delta, China were investigated using fugacity modeling under steady state assumption. Both assumed evenly and observed unevenly distributed PAH moles emission profiles were applied. Applicability of the fugacity model was validated against the observed media PAH concentrations and profiles.
View Article and Find Full Text PDFEnviron Sci Technol
January 2007
A novel passive air sampler was designed and tested that individually collects the gaseous and particulate phase polycyclic aromatic hydrocarbons (PAHs) in air. The sampler was calibrated against a conventional active sampler in an indoor environment. A PUF (polyurethane foam) disk and a piece of GFF (glass fiber filter) were installed in a sampling shelter for collecting gaseous and particulate phase PAHs, respectively.
View Article and Find Full Text PDF