Cryogenic Propellant management is a critical roadblock to enable long term space missions. Commonly used propellants (liquid hydrogen and methane) undergo constant vaporization but there is limited knowledge on the phase change rate and its implications on long term storage stability. This is, in part, due to the inability to image the liquid-vapor mixture inside opaque metallic containers at cryogenic temperatures.
View Article and Find Full Text PDFAlginate microgels are widely generated by ionic crosslinking methods, but this method has limitations in controlling the microgel degradation and generating non-spherical microgels. By employing oxidized methacrylated alginate (OMA) that is degradable and photocrosslinkable, we have successfully photocrosslinked monodisperse OMA microgels and demonstrated the feasibility to generate discoid alginate microgels. However, several technical issues obstructed our opto-microfluidic method from being a useful technique.
View Article and Find Full Text PDFUsing a unique, near-field microscopy technique, fringe patterns and nanoparticle motions are visualized immediately following a nanofluid droplet deposition on a glass substrate in which an air bubble is entrapped. The nanofluid consists of DI-water, 0.10% Aluminum Oxide nanoparticles with an average diameter of 50 nm, and 0.
View Article and Find Full Text PDFWe present a simple microfluidic technique to in-situ photopolymerize (by 365 nm ultraviolet) monodisperse oxidized methacrylated alginate (OMA) microgels using a photoinitiator (VA-086). By this technique, we generated monodisperse spherical OMA beads and discoid non-spherical beads with better shape consistency than ionic crosslinking methods do. We found that a high monomer concentration (8 w/v %), a high photoinitiator concentration (1.
View Article and Find Full Text PDFDuring the evaporation of a droplet, there exists an evaporating thin layer that is difficult to visualize because of optical restrictions. The present study visualized this thin layer by using a reflective-mode, confocal microscope that can provide improved signal-to-noise focal plane imaging over traditional optical microscopy while simultaneously serving as an interferometer when imaging thin liquid films. The spatial distribution of the evaporating thin layer thickness was determined from interferometric fringe analysis.
View Article and Find Full Text PDFAn electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM).
View Article and Find Full Text PDFAfter the implantation of a biomaterial in the body, the first interaction occurs between the cells in contact with the biomaterial surface. Therefore, evaluating the cell-substrate interface is crucial for designing a successful implant. In this study, the interaction of MC3T3 osteoblasts was studied on commercially pure and alloy (Ti6Al4V) Ti surfaces treated with amorphous and crystalline titanium dioxide nanotubes.
View Article and Find Full Text PDFBackground: Nonsteroidal anti-inflammatory drugs (NSAIDs) are well known for treating inflammatory disease and have been reported to have anti-tumorigenic effects. Their mechanisms are not fully understood, but both cyclooxygenase (COX) dependent and independent pathways are involved. Our goal was to shed further light on COX-independent activity.
View Article and Find Full Text PDFAdvancements in nanoscale fabrication allow creation of small-volume reaction containers that can facilitate the screening and characterization of enzymes. A porous, ∼19 pL volume vessel has been used in this work to carry out enzyme reactions under varying substrate concentrations. Assessment of small-molecule and green fluorescent protein diffusion from the vessels indicates that pore sizes on the order of 10 nm can be obtained, allowing capture of proteins and diffusive exchange of small molecules.
View Article and Find Full Text PDFThis study examines the effect of environmental and experimental conditions, such as temperature and time, on the wettability properties of titania nanotube (TNT) surfaces fabricated by anodization. The fabricated TNTs are 60-130 nm inner diameter and 7-10 µm height. One-microliter water droplets were used to define the wettability of the TNT surfaces by measuring the contact angles.
View Article and Find Full Text PDFIntracellular vesicles, comprised of protein clusters, were individually tracked inside human brain cancer cells and characterized to simultaneously determine the average vesicle size and effective cytoplasmic viscosity. The cells were transfected with a TGF-β superfamily gene, non-steroidal anti-inflammatory drug-Activated Gene-1 (NAG-1) tagged with green fluorescent proteins (GFPs). Using total internal reflection fluorescent microscopy (TIRFM) the individual movements of the vesicles were categorized into either Brownian, caged, or directional type motion.
View Article and Find Full Text PDFThe reaction and diffusion of molecules across barriers and through crowded environments is integral to biological system function and to separation technologies. Ordered, microfabricated post arrays are a promising route to creating synthetic barriers with controlled chemical and physical characteristics. They can be used to create crowded environments, to mimic aspects of cellular membranes, and to serve as engineered replacements of polymer-based separation media.
View Article and Find Full Text PDFMulti-scale lithography and cryogenic deep reactive ion etching techniques were used to create ensembles of nanoporous, picolitre volume, reaction vessels within a microfluidic system. The fabrication of these vessels is described and how this process can be used to tailor vessel porosity by controlling the width of slits that constitute the vessel pores is demonstrated. Control of pore size allows the containment of nucleic acids and enzymes that are the foundation of biochemical reaction systems, while allowing smaller reaction constituents to traverse the container membrane and continuously supply the reaction.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2010
Expression of cyclooxygenases (COX) and lipoxygenases (LOX) has been linked to many pathophysiological phenotypes, including cell adhesion. However, many current approaches to measure cellular changes are performed only in a fixed-time point. Since cells dynamically move in conjunction with the cell matrix, there is a pressing need for dynamic or time-dependent methods for the investigation of cell properties.
View Article and Find Full Text PDFAnnu ORNL Biomed Sci Eng Cent Conf
June 2009
Engineers seek to use biological design principles to manipulate information and import new functionality to synthetic devices. Such devices inspired by natural systems could, in turn, play a crucial role in allowing biologists to explore the effects of physical transport and extreme conditions of temperature and pH on reaction systems. For example, engineered reaction containers can be physically and chemically defined to control the flux of molecules of different sizes and charge.
View Article and Find Full Text PDFNonsteroidal anti-inflammatory drugs (NSAIDs) are known to prevent colorectal tumorigenesis. Although antitumor effects of NSAIDs are mainly due to inhibition of cyclooxygenase activity, there is increasing evidence that cyclooxygenase-independent mechanisms may also play an important role. The early growth response-1 (EGR-1) gene is a member of the immediate-early gene family and has been identified as a tumor suppressor gene.
View Article and Find Full Text PDFThe use of an optically thin indium-tin-oxide (ITO) electrode is presented for an optoelectric biosensor simultaneously recording optical images and microimpedance to examine time-dependent cellular growth. The transmittance of a 100 nm thick ITO electrode layer is approximately the same as the transmittance of a clean glass substrate, whereas the industry-standard Au(47.5 nm)/Ti(2.
View Article and Find Full Text PDF