Publications by authors named "Chang H Byeon"

Biofilm-protected pathogenic causes chronic infections that are difficult to treat. An essential building block of these biofilms are functional amyloid fibrils that assemble from phenol-soluble modulins (PSMs). PSMα1 cross-seeds other PSMs into cross-β amyloid folds and is therefore a key element in initiating biofilm formation.

View Article and Find Full Text PDF

HIV-1 Vpr is a prototypic member of a large family of structurally related lentiviral virulence factors that antagonize various aspects of innate antiviral immunity. It subverts host cell DNA repair and protein degradation machineries by binding and inhibiting specific post-replication repair enzymes, linking them via the DCAF1 substrate adaptor to the Cullin 4 RING E3 ligase (CRL4). HIV-1 Vpr also binds to the multi-domain protein hHR23A, which interacts with the nucleotide excision repair protein XPC and shuttles ubiquitinated proteins to the proteasome.

View Article and Find Full Text PDF

Comprehensive resonance assignments and delineation of the secondary structure elements of the C-terminal Vpr-binding region of hHR23A, residues 223-363, were achieved by triple-resonance NMR experiments on uniformly C,N-labeled protein. Assignments are 100% and > 95% complete for backbone and side-chain resonances, respectively. This data constitutes important complementary information for our ongoing structure determination of the Vpr-hHR23A(223-363) complex.

View Article and Find Full Text PDF

Background: Efficient HIV-1 replication depends on interaction of the viral capsid with the host protein cyclophilin A (CypA). CypA, a peptidylprolyl isomerase, binds to an exposed loop in the viral CA protein via the enzyme's active site. Recent structural analysis of CypA in complex with CA tubes in conjunction with molecular dynamics simulations identified a secondary CA binding site on CypA that allows a bridging interaction with two hexameric subunits of the assembled CA lattice, leading to capsid stabilization (Liu et al.

View Article and Find Full Text PDF