Publications by authors named "Chang Duk Kang"

Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity.

View Article and Find Full Text PDF

Owing to the growing market for the biodegradable and renewable polymer, polylactic acid, world demand for lactic acid is rapidly increasing. However, the very high concentrations desired for industrial production of the free lactic acid create toxicity and low pH concerns for manufacturers. Saccharomyces cerevisiae is the most well characterized eukaryote, a preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust, commercially compatible workhorse to be exploited for the production of diverse chemicals.

View Article and Find Full Text PDF

A fed-batch culture process followed by subsequent photoautotrophic induction was established for the high density culture of astaxanthin-rich Haematococcus pluvialis using a CO(2)-fed flat type photobioreactor under unsynchronized illumination. Fed-batch culture was performed with an exponential feeding strategy of the growth-limiting nutrients, nitrate and phosphate, concurrently with the stepwise supplementation of light depending on the cell concentration. During the growth phase, a biomass of 1.

View Article and Find Full Text PDF

A non-labeling fluorescence sensor system was developed using polydiacetylene (PDA) liposomes composed of 10,12-pentacosadiynoic acid (PCDA) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at a 8:2 molar ratio. The PDA liposomes were immobilized onto an amine-coated glass surface using peptide bonding between the carboxyl group of the liposome and the amine group of the glass surface. The optimum ratio of the cross linker (NHS/EDC) to PDA liposome was determined to be 50% for strong immobilization of the liposomes.

View Article and Find Full Text PDF

A surface plasmon resonance (SPR)-based inhibition assay method using a polyclonal anti-mouse IgM arrayed Cryptosporidium sensor chip was developed for the real-time detection of Cryptosporidium parvum oocysts. The Cryptosporidium sensor chip was fabricated by subsequent immobilization of streptavidin and polyclonal anti-mouse IgM (secondary antibody) onto heterogeneous self-assembled monolayers (SAMs). The assay consisted of the immunoreaction step between monoclonal anti-C.

View Article and Find Full Text PDF

A green, downstream process using common vegetable oils was used for the direct extraction of astaxanthin from Haematococcus. The process consists of a single integrated unit to extract astaxanthin with subsequent separation of the astaxanthin-containing oil extract. Without a cell harvest process step, the culture broth was directly mixed with the vegetable oils; the astaxanthin inside the cell was extracted into the vegetable oil phase by hydrophobic interactions, with recovery yields of 88% and above.

View Article and Find Full Text PDF

A novel tandem solvent process of dodecane and methanol was developed for the selective extraction of free astaxanthin from red encysted Haematococcus culture. The process consists of dodecane extraction for astaxanthin mixture from the culture (stage 1) and methanol extraction for free astaxanthin from the dodecane extract (stage 2). In the first stage, astaxanthin mixture was directly extracted to dodecane from the culture broth without cell harvest process, followed by a rapid separation of the dodecane extract and the culture medium containing cell debris by simple settling.

View Article and Find Full Text PDF