Ying Yong Sheng Tai Xue Bao
September 2016
Soil samples were collected from an alpine coniferous forest. Soil cores with soil organic layer above and mineral soil layer below were incubated in plant growth chambers during 10 weeks. Taking the annual average soil temperature in the alpine forest as the control, and other two levels of temperature were increased 2 and 4 ℃, respectively, to investigate the responses of soil microbial community and soil enzyme activity to warming.
View Article and Find Full Text PDFThe relationships between litter decomposition rate and their initial quality of 14 representative plants in the alpine forest ecotone of western Sichuan were investigated in this paper. The decomposition rate k of the litter ranged from 0.16 to 1.
View Article and Find Full Text PDFThe mass loss and lignocellulose enzyme activities of Actinothuidium hookeri residues and Cystopteris montana leaf litter in coniferous forest and timberline of western Sichuan, China were investigated. The results showed that both the mass loss rates of A. hookeri and C.
View Article and Find Full Text PDFIn order to understand the relationship between litter decomposition and soil fauna diversity during snow cover season, litterbags with plant debris of Actinothuidium hookeri, Cystopteris montana, two representative understory plants in the alpine timberline ecotone, and their mixed litter were incubated in the dark coniferous forest, timberline and alpine meadow, respectively. After a snow cover season, the mass loss and soil fauna in litterbags were investigated. After decomposition with a snow cover season, alpine meadow showed the highest mass loss of plant debris in comparison with coniferous forest and timberline, and the mass loss of A.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
November 2014
The effects of forest gap size on the distribution of soil aggregates, organic carbon and labile organic carbon were investigated in a 39-year-old Pinus massoniana plantation in Yibin, Sichuan Province. The results showed that the composition of soil aggregates was dominated by particles > 2 mm, which accounted for 51.7%-78.
View Article and Find Full Text PDF