Publications by authors named "Chandrashekhar Joshi"

Context: The coexistence of tuberculosis (TB) and mental disorder presents a daunting public health challenge. Studies suggest that TB patients often experience co-morbid mental health problems, highlighting a dual burden of illness. However, due to limited research in Gujarat, we cannot draw definitive conclusions or develop targeted mental health interventions for this population.

View Article and Find Full Text PDF

In oxygen-deprived conditions, cells respond by activating adaptive mechanisms to bolster their survival and protect tissue integrity. A key player in this process is the HIF-1α signaling cascade, meticulously regulated by Prolyl Hydroxylase Domain 2 (PHD2), which orchestrates cellular responses to varying oxygen levels. The primary aim of this investigation is to utilize gut siderophores as inhibitors of PHD2 in ischemic conditions.

View Article and Find Full Text PDF

Purpose: Histone methyltransferases are enzymes that selectively methylate lysine or arginine residues on both histone and non-histone proteins, categorized into lysine methyltransferases and arginine methyltransferases. Notably, EZH2 and PRMT5 are known for catalyzing trimethylation of H3 at K27 and symmetric dimethylation of H4 at R3, respectively. These methylation events are recognized as characteristic histone-repressive marks in cancer.

View Article and Find Full Text PDF

Introduction: The rise of antimicrobial resistance represents a critical threat to global health, exacerbated by the excessive and inappropriate dispensing and use of antimicrobial drugs, notably antibiotics, which specifically target bacterial infections. The surge in antibiotic consumption globally is particularly concerning in low-income and middle-income countries (LMICs), where informal healthcare providers (IPs) play a vital role in the healthcare landscape. Often the initial point of contact for healthcare-seeking individuals, IPs play a crucial role in delivering primary care services in these regions.

View Article and Find Full Text PDF

Background: Secondary cell wall holds considerable potential as it has gained immense momentum to replace the lignocellulosic feedstock into fuels. Lignin one of the components of secondary cell wall tightly holds the polysaccharides thereby enhancing the recalcitrance and complexity in the biomass. Laccases (LAC) and peroxidases (PRX) are the major phenyl-oxidases playing key functions during the polymerization of monolignols into lignin.

View Article and Find Full Text PDF

Introduction: The COVID-19 pandemic disproportionately affected patients who had comorbid diabetes mellitus. COVID-19 patients with diabetes experience significantly higher rates of complications and mortality. COVID-induced diabetes is a novel phenomenon observed in critically ill patients.

View Article and Find Full Text PDF

Lignocellulosic biomass from the secondary cell walls of plants has a veritable potential to provide some of the most appropriate raw materials for producing second-generation biofuels. Therefore, we must first understand how plants synthesize these complex secondary cell walls that consist of cellulose, hemicellulose, and lignin in order to deconstruct them later on into simple sugars to produce bioethanol via fermentation. homeobox () genes encode homeodomain-containing transcription factors (TFs) that modulate various important developmental processes in plants.

View Article and Find Full Text PDF

The precise role of KNAT7 transcription factors (TFs) in regulating secondary cell wall (SCW) biosynthesis in poplars has remained unknown, while our understanding of KNAT7 functions in other plants is continuously evolving. To study the impact of genetic modifications of homologous and heterologous gene expression on SCW formation in transgenic poplars, we prepared poplar () overexpression (-OE) and antisense suppression (-AS) vector constructs for the generation of transgenic poplar lines -mediated transformation. Since the overexpression of homologous genes can sometimes result in co-suppression, we also overexpressed () in transgenic poplars.

View Article and Find Full Text PDF

TP53 (tumor protein 53)-induced glycolysis and apoptosis regulator (TIGAR) belongs to the phosphatases family of proteins that modulates the level of reactive oxygen species in tumor cells. This protein plays a vital role as a negative regulator of glycolysis, thus lowering ROS levels in the cells, which helps the cancerous cells to resist programmed cell death. Besides, TIGAR also mediates the DNA damage repair in cancer cells by increasing tumor cell survival.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy and is highly resistant to standard treatment regimens. Targeted therapies against , a mutation present in an overwhelming majority of PDAC cases, have been largely ineffective. However, inhibition of downstream components in the KRAS signaling cascade provides promising therapeutic targets in the management of PDAC and warrants further exploration.

View Article and Find Full Text PDF

Background: Pongamia (Millettia pinnata syn. Pongamia pinnata), an oilseed legume species, is emerging as potential feedstock for sustainable biodiesel production. Breeding Pongamia for favorable traits in commercial application will rely on a comprehensive understanding of molecular mechanism regulating oil accumulation during its seed development.

View Article and Find Full Text PDF

Background: is a medicinal herb used to cure various ailments in subtropical and tropical regions of Southeast Asia.

Objective: The objective of this evaluation of against free radical induced DNA and erythrocyte damage.

Materials And Methods: The profiles of polyphenol and flavonoid were quantified through reversed-phase high-performance liquid chromatography.

View Article and Find Full Text PDF

Hypoxia-inducible factors (HIF) belong to the basic helix loop helix-PER ARNT SIM (bHLH-PAS) family of transcription factors that induce metabolic reprogramming under hypoxic condition. The phylogenetic studies of hypoxia-inducible factor-1α (HIF-1α) sequences across different organisms/species may leave a clue on the evolutionary relationships and its probable correlation to tumorigenesis and adaptation to low oxygen environments. In this study, we have aimed at the evolutionary investigation of the protein HIF-1α across different species to decipher their sequence variations/mutations and look into the probable causes and abnormal behaviour of this molecule under exotic conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Nanotechnology is emerging as a significant field in medicine, with marine floras like marine endophytes attracting research interest due to their bioactive compounds.
  • Researchers studied the green synthesis of gold nanoparticles (AuNPs) from a fungus isolated from brown algae, confirming its identity through genetic sequencing.
  • Characterization of the AuNPs was conducted using multiple methods, and they exhibited notable antioxidant activity, suggesting potential for developing affordable and effective drugs for various health conditions.
View Article and Find Full Text PDF

Endophytic fungi from marine seaweeds are the less studied group of organisms with vast medical applications. The aim of the present study was to evaluate antioxidant, antiangiogenic as well as wound healing potential of the endophytic fungus isolated from the seaweed . The morphological characters and the rDNA internal transcribed spacer sequence analysis (BLAST search in Gen Bank database) was used for the identification of endophytic fungus.

View Article and Find Full Text PDF

Functional characterization of two tobacco genes, one involved in xylan synthesis and the other, a positive regulator of secondary cell wall formation, is reported. Lignocellulosic secondary cell walls (SCW) provide essential plant materials for the production of second-generation bioethanol. Therefore, thorough understanding of the process of SCW formation in plants is beneficial for efficient bioethanol production.

View Article and Find Full Text PDF

We report a novel approach for enhanced accumulation of fatty acids and triacylglycerols for utilization as biodiesel in transgenic tobacco stems through xylem-specific expression of Arabidopsis DGAT1 and LEC2 genes. The use of plant biomass for production of bioethanol and biodiesel has an enormous potential to revolutionize the global bioenergy outlook. Several studies have recently been initiated to genetically engineer oil production in seeds of crop plants to improve biodiesel production.

View Article and Find Full Text PDF

Economical production of bioethanol from lignocellulosic biomass still faces many technical limitations. Cost-effective production of fermentable sugars is still not practical for large-scale production of bioethanol due to high costs of lignocellulolytic enzymes. Therefore, plant molecular farming, where plants are used as bioreactors, was developed for the mass production of cell wall degrading enzymes that will help reduce costs.

View Article and Find Full Text PDF

Aims And Objectives: We evaluated the incidence and implications of coronary artery disease (CAD) in patients above 40 years presenting for valve surgery.

Materials And Methods: Between January 2009 and December 2010, coronary angiography (CAG) was performed in all such patients ( n = 140).

Results: Coronaries were normal in 119 (Group I), and diseased in 21 (Group II).

View Article and Find Full Text PDF

All known orthologs of a secondary wall-associated cellulose synthase (CesA) gene from Arabidopsis, AtCesA8, encode CesA proteins with two consecutive methionines at their N-termini (MM or 2M). Here, we report that these 2Ms in an aspen ortholog of AtCesA8, PtdCesA8A, are important for maintaining normal wood cellulose biosynthesis in aspen trees. Overexpression of an altered PtdCesA8A cDNA encoding a PtdCesA8A protein missing one methionine at the N-terminus (1M) in aspen resulted in substantial decrease in cellulose content and caused negative effects on wood strength, suggesting that both methionines are essential for proper CesA expression and function in developing xylem tissues.

View Article and Find Full Text PDF

Plants are attractive expression systems for large-scale, low-cost production of high-value proteins. The xylanase 2 gene (Xyn2), encoding an endo-β-1,4-xylanase from Trichoderma reesei, was cloned and expressed in Escherichia coli and the poplar (Populus spp.).

View Article and Find Full Text PDF

Genetic manipulation of cellulose biosynthesis in trees may provide novel insights into the growth and development of trees. To explore this possibility, the overexpression of an aspen secondary wall-associated cellulose synthase (PtdCesA8) gene was attempted in transgenic aspen (Populus tremuloides L.) and unexpectedly resulted in silencing of the transgene as well as its endogenous counterparts.

View Article and Find Full Text PDF

Virus-induced gene silencing (VIGS) is a powerful genetic tool for rapid assessment of plant gene functions in the post-genomic era. Here, we successfully implemented a Tobacco Rattle Virus (TRV)-based VIGS system to study functions of genes involved in either primary or secondary cell wall formation in Nicotiana benthamiana plants. A 3-week post-VIGS time frame is sufficient to observe phenotypic alterations in the anatomical structure of stems and chemical composition of the primary and secondary cell walls.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionn9d86nm1gddkk4ccee2p5klbsqhgrtpt): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once