Graphene Quantum Dots (GQDs) are crucial in biomedicine for sensitive biosensing and high-resolution bioimaging and in photonics for their nonlinear optical properties. Integrating GQDs with photonic structures enhances optical properties by optimizing light-matter interactions and enabling precise control over their emission wavelengths. In this work, we explore a facile synthesis method for GQDs by pulsed laser irradiation in chlorobenzene and highlight the transformative potential of Tamm Plasmon Cavity (TPC) structures for tuning and amplifying the photoluminescence and nonlinear optical properties of GQDs.
View Article and Find Full Text PDFThe insertion of a nonlinear material at the photonic crystal cavity leads to a strong interaction between localized photonic modes and the introduced material's electronic state, leading to exceptionally improved nonlinear optical properties at low input power. We report the enhanced nonlinear absorption and optical limiting properties of C-4-hydroxy-3-methoxphenilcalix[4]resorcinarene (CHMPCR) in a one-dimensional polymeric photonic crystal cavity. Open aperture z-scan measurements with a nanosecond pulsed laser beam having a repetition rate of 10 Hz at 532 nm from a polymeric-based microcavity demonstrate a 4.
View Article and Find Full Text PDFA set of four symmetric, butterfly-shaped 4-(4-(decyloxy)phenyl)-2,6-di(thiophen-2-yl)pyridine (TPY) derivatives 2TPA-TPY (TPY center and triphenylamine end groups), 2CBZ-TPY (TPY center and N-ethyl carbazole end groups), 2TPY-TPA (triphenylamine center and TPY at the periphery) and 2TPY-CBZ (N-ethyl carbazole center and TPY at the periphery) was synthesized. The molecules show reverse saturable absorption (RSA) which is consistent with two-photon absorption (2PA) associated with excited-state absorption (ESA) when excited using a 532 nm laser beam. The molecules 2TPA-TPY and 2TPY-TPA possess extremely low limiting thresholds of 1.
View Article and Find Full Text PDFA series of trigonal-shaped molecules (TPyT and TPyP) and a polymer (P2TPy) with donor-acceptor-donor (D-A-D) structural arrangement were designed with thiophene and 2,4,6-trisubstituted pyridine as the backbone i.e., a 4-(4-(decyloxy)phenyl)-2,6-di(thiophen-2-yl)pyridine core structure, for the first time and synthesized via a microwave assisted one pot reaction.
View Article and Find Full Text PDF