Estimating skeletal muscle (finger) forces using surface Electromyography (sEMG) signals poses many challenges. In general, the sEMG measurements are based on single sensor data. In this paper, two novel hybrid fusion techniques for estimating the skeletal muscle force from the sEMG array sensors are proposed.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2013
In this paper, we present a method of combining spectral models using a Kullback Information Criterion (KIC) data fusion algorithm. Surface Electromyographic (sEMG) signals and their corresponding skeletal muscle force signals are acquired from three sensors and pre-processed using a Half-Gaussian filter and a Chebyshev Type- II filter, respectively. Spectral models - Spectral Analysis (SPA), Empirical Transfer Function Estimate (ETFE), Spectral Analysis with Frequency Dependent Resolution (SPFRD) - are extracted from sEMG signals as input and skeletal muscle force as output signal.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
This paper presents a surface electromyographic (sEMG)-based, optimal control strategy for a prosthetic hand. System Identification (SI) is used to obtain the dynamic relation between the sEMG and the corresponding skeletal muscle force. The input sEMG signal is preprocessed using a Half-Gaussian filter and fed to a fusion-based Multiple Input Single Output (MISO) skeletal muscle force model.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2011
Annu Int Conf IEEE Eng Med Biol Soc
April 2011
Skeletal muscle force can be estimated using surface electromyographic (sEMG) signals. Usually, the surface location for the sensors is near the respective muscle motor unit points. Skeletal muscles generate a spatial EMG signal, which causes cross talk between different sEMG signal sensors.
View Article and Find Full Text PDF