Radicals, with their unpaired electrons, exhibit unique chemical and physical properties that have long intrigued chemists. Despite early skepticism about their stability, the discovery of persistent radicals has opened new possibilities for molecular interactions. This review examines the mechanisms and applications of radically driven self-assembly, focusing on key motifs such as naphthalene diimides, tetrathiafulvalenes, and viologens, which serve as models for radical assembly.
View Article and Find Full Text PDFWe report the morphology and microstructure of -dialkyl side-chain-substituted thiophene DPP end-capped with phenyl groups (Ph-TDPP-Ph) thin films and compare the influence of deposition method and substrate surface using thermally oxidized Si and graphene substrates as well as monolayer graphene surfaces with an underlying self-assembled octadecyltrichlorosilane monolayer, complemented by an aging study of spin-coated films over a 2 weeks aging period. A distinct difference in morphology was observed between spin-coated and vacuum-deposited thin films, which formed a fiber-like morphology and a continuous layer of terraced grains, respectively. After an initial film evolution, all combinations of deposition method and substrate type result in well-ordered thin films with almost identical crystalline phases with slight variations in crystallinity and mosaicity.
View Article and Find Full Text PDFThe ternary blend approach accomplished improved spectral coverage and enhanced the power conversion efficiency (PCE) of organic solar cells (OSCs). However, the role of the third component in improving the photovoltaic parameters needs critical analysis. Here, we introduced a wide band gap n-type twisted perylene diimide (TPDI) into the PM6:Y6 blend as a third component that improves spectral coverage and morphology, resulting in an overall increase in the efficiency of the OSCs.
View Article and Find Full Text PDFThe introduction of nonfullerene acceptors (NFA) facilitated the realization of high-efficiency organic solar cells (OSCs); however, OSCs suffer from relatively large losses in open-circuit voltage () as compared to inorganic or perovskite solar cells. Further enhancement in power conversion efficiency requires an increase in . In this work, we take advantage of the high dipole moment of twisted perylene-diimide (TPDI) as a nonfullerene acceptor (NFA) to enhance the of OSCs.
View Article and Find Full Text PDFElectrochemical doping is central to a host of important applications such as bio-sensing, neuromorphic computing and charge storage. However, the mechanisms that enable electrochemical dopability and the various parameters that control doping efficiencies are poorly understood. Here, employing complementary electrochemical and spectroelectrochemical measurements, we report a charge-polarity dependent ion insertion asymmetry in a diketopyrrolopyrrole-based ambipolar π-conjugated polymer.
View Article and Find Full Text PDF