Publications by authors named "Chandrasekaran Nagaswami"

Venous thrombosis is a well-known complication of sex hormone therapy, with onset typically within weeks to months after initiation. Worldwide, more than 100 million pre-menopausal women use combined oral contraceptives, with tens to hundreds of thousands developing thrombosis annually, resulting in significant morbidity and mortality. Although it is known that estrogens can alter expression of coagulation factors, the pathways and mechanisms that connect the two systems, as well as the proteins involved in progression to thrombosis, are poorly understood.

View Article and Find Full Text PDF

Background And Aims: Hypercholesterolemia (HC) has previously been shown to augment the restenotic response in animal models and humans. However, the mechanistic aspects of in-stent restenosis (ISR) on a hypercholesterolemic background, including potential augmentation of systemic and local inflammation precipitated by HC, are not completely understood. CD47 is a transmembrane protein known to abort crucial inflammatory pathways.

View Article and Find Full Text PDF
Article Synopsis
  • Blood clots in zebrafish consist mainly of red blood cells and platelets, and the study aims to compare their clot formation with that in mammals.
  • The research utilized transgenic zebrafish and advanced imaging techniques to analyze blood clot structure and the role of thrombocytes in clotting, revealing similar structures between fish and mammalian thrombi.
  • Findings indicate that clot formation can occur without blood cells and suggest that there is evolutionary conservation in clotting processes, which may imply that mammals could also form clots without circulating cells.
View Article and Find Full Text PDF

Fibrin provides the main structural integrity and mechanical strength to blood clots. Failure of fibrin clots can result in life-threating complications, such as stroke or pulmonary embolism. The dependence of rupture resistance of fibrin networks (uncracked and cracked) on fibrin(ogen) concentrations in the (patho)physiological 1-5 g L range is explored by performing the ultrastructural studies and theoretical analysis of the experimental stress-strain profiles available from mechanical tensile loading assays.

View Article and Find Full Text PDF

The mechanical stability of blood clots necessary for their functions is provided by fibrin, a fibrous gel. Rupture of clots leads to life-threatening thrombotic embolization, which is little understood. Here, we combine experiments and simulations to determine the toughness of plasma clots as a function of fibrin content and correlate toughness with fibrin network structure characterized by confocal and scanning electron microscopy.

View Article and Find Full Text PDF

Mutations in the MYH9 gene result in macrothrombocytopenia often associated with hemorrhages. Here, we studied the function and structure of platelets in three family members with a heterozygous mutation R1933X in the MYH9 gene, characteristic of closely related disorders known as the May-Hegglin anomaly and Sebastian syndrome. The examination included complete blood count, blood smear microscopy, platelet flow cytometry (expression of P-selectin and active integrin αIIbβ3 before and after activation), the kinetics of platelet-driven contraction (retraction) of blood clots, as well as scanning/transmission electron microscopy of platelets.

View Article and Find Full Text PDF

Bioprosthetic heart valves (BHV) fabricated from glutaraldehyde-fixed heterograft tissue, such as bovine pericardium (BP), are widely used for treating heart valve disease, a group of disorders that affects millions. Structural valve degeneration (SVD) of BHV due to both calcification and the accumulation of advanced glycation end products (AGE) with associated serum proteins limits durability. We hypothesized that BP modified with poly-2-methyl-2-oxazoline (POZ) to inhibit protein entry would demonstrate reduced accumulation of AGE and serum proteins, mitigating SVD.

View Article and Find Full Text PDF

Introduction: Non-compressible intra-abdominal hemorrhage (NCIAH) is a major cause of preventable death on the battlefield and in civilian trauma. Currently, it can only be definitively managed with surgery, as there are limited strategies for controlling ongoing NCIAH in the prehospital environment. We hypothesized that a self-propelling thrombin-containing powder (SPTP) could increase survival in a swine model of NCIAH when delivered percutaneously into the closed abdomen using an engineered spray system.

View Article and Find Full Text PDF

Background: Infection by SARS-CoV-2 produces significant pulmonary pathology including endothelial damage with resultant thrombotic events. While pathologic features were described, there are limited data on the relationship of these changes to the inflammatory response and the production of thromboses.

Objective: To investigate pathology of COVID-19-related immunothrombosis.

View Article and Find Full Text PDF

To reveal if coagulopathies relate to the course of COVID-19, we examined 255 patients with moderate and severe COVID-19, receiving anticoagulants and immunosuppressive drugs. Coagulopathy manifested predominantly as hypercoagulability that correlated directly with systemic inflammation, disease severity, comorbidities, and mortality risk. The prolonged clotting tests in about ¼ of cases were associated with high levels of C-reactive protein and antiphospholipid antibodies, which impeded coagulation in vitro.

View Article and Find Full Text PDF

Background: Blood clot contraction, volume shrinkage of the clot, is driven by platelet contraction and accompanied by compaction of the erythrocytes and their gradual shape change from biconcave to polyhedral, with the resulting cells named polyhedrocytes.

Objectives: Here, we examined the role of erythrocyte rigidity on clot contraction and erythrocyte shape transformation.

Methods: We used an optical tracking methodology that allowed us to quantify changes in contracting clot size over time.

View Article and Find Full Text PDF

Background And Purpose: The purpose was to assess quantitatively and qualitatively the composition and structure of cerebral thrombi and correlate them with the signs of intravital clot contraction (retraction), as well as with etiology, severity, duration, and outcomes of acute ischemic stroke.

Methods: We quantified high-resolution scanning electron micrographs of 41 cerebral thrombi for their detailed cellular and noncellular composition and analyzed histological images for the overall structure with the emphasis on red blood cell compression, fibrin age, and the signs of inflammation.

Results: Cerebral thrombi were quite compact and had extremely low porosity.

View Article and Find Full Text PDF

Although arterial and venous thromboembolic disorders are among the most frequent causes of mortality and morbidity, there has been little description of how the composition of thrombi and emboli depends on their vascular origin and age. We quantified the structure and composition of arterial and venous thrombi and pulmonary emboli using high-resolution scanning electron microscopy. Arterial thrombi contained a surprisingly large amount of fibrin, in addition to platelets.

View Article and Find Full Text PDF

In-stent restenosis (ISR) and late stent thrombosis are the major complications associated with the use of metal stents and drug eluting stents respectively. Our lab previously investigated the use of peptide CD47 in improving biocompatibility of bare metal stents in a rat carotid stent model and our results demonstrated a significant reduction in platelet deposition and ISR. However, this study did not characterize the stability of the pepCD47 on metal surfaces post storage, sterilization and deployment.

View Article and Find Full Text PDF

Polyhedral erythrocytes, named polyhedrocytes, are formed in contracted blood clots and thrombi, as a result of compression by activated contractile platelets pulling on fibrin. This deformation was shown to be mechanical in nature and polyhedrocytes were characterized using light and electron microscopy. Through three-dimensional reconstruction, we quantified the geometry of biconcave, intermediate, and polyhedral erythrocytes within contracting blood clots.

View Article and Find Full Text PDF

Inflammation and thrombosis are integrated, mutually reinforcing processes, but the interregulatory mechanisms are incompletely defined. Here, we examined the contribution of α-defensins (α-defs), antimicrobial proteins released from activated human neutrophils, on clot formation in vitro and in vivo. Activation of the intrinsic pathway of coagulation stimulates release of α-defs from neutrophils.

View Article and Find Full Text PDF

Contraction (retraction) of the blood clot is a part of the clotting process driven by activated platelets attached to fibrin that can potentially modulate the obstructiveness and integrity of thrombi. The aim of this work was to reveal the pathogenic importance of contraction of clots and thrombi in venous thromboembolism (VTE). We investigated the kinetics of clot contraction in the blood of 55 patients with VTE.

View Article and Find Full Text PDF

The flexible C-terminal parts of fibrinogen's Aα chains named the αC regions have been shown to play a role in fibrin self-assembly, although many aspects of their structure and functions remain unknown. To examine the involvement of the αC regions in the early stages of fibrin formation, we used high-resolution atomic force microscopy to image fibrinogen and oligomeric fibrin. Plasma-purified full-length human fibrinogen or des-αC fibrinogen lacking most of the αC regions, untreated or treated with thrombin, was imaged.

View Article and Find Full Text PDF

Background And Aim: It was hypothesized that the pattern of coronary occlusion (thrombus composition) might contribute to the onset of ventricular arrhythmia and sudden cardiac death (SCD) in myocardial infarction (MI).

Methods: The TIDE (Thrombus and Inflammation in sudden DEath) study included patients with angiographically-proven acute coronary occlusion as the cause of a ST elevation MI (STEMI) complicated by Sudden Cardiac Death (SCD group) or not (STEMI group). Thrombi were obtained by thrombo-aspiration before primary percutaneous coronary stenting and analyzed with a quantitative method using scanning electron microscopy.

View Article and Find Full Text PDF

The major structural component of a blood clot is a mesh of fibrin fibers. Our goal was to determine whether fibrinogen glycation and fibrin fiber diameter have an effect on the mechanical properties of single fibrin fibers. We used a combined atomic force microscopy/fluorescence microscopy technique to determine the mechanical properties of individual fibrin fibers formed from blood plasma.

View Article and Find Full Text PDF

The effectiveness of endovascular stents is hindered by in-stent restenosis (ISR), a secondary re-obstruction of treated arteries due to unresolved inflammation and activation of smooth muscle cells in the arterial wall. We previously demonstrated that immobilized CD47, a ubiquitously expressed transmembrane protein with an established role in immune evasion, can confer biocompatibility when appended to polymeric surfaces. In present studies, we test the hypothesis that CD47 immobilized onto metallic surfaces of stents can effectively inhibit the inflammatory response thus mitigating ISR.

View Article and Find Full Text PDF

The present study extends our previous investigation of circulating antibody/fibrinogen/C1q complexes (FgIgC) associated with thrombosis in a heterophenotypic AαR16C proband, by focusing on the molecular and functional characteristics of the FgIgC, isolated by cryoprecipitation, FgIgC components were demonstrated by SDS-PAGE and by rotary shadowing electron microscopy. Affinity chromatography was used to isolate IgG and fibrinogen from FgIgC. Thrombin-induced clots were examined by scanning electron microscopy and turbidity measurements.

View Article and Find Full Text PDF

Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel.

View Article and Find Full Text PDF