Publications by authors named "Chandrasekaran Gopalakrishnan"

Motile cilia are crucial for maintaining healthy bodily functions by facilitating fluid transport and removing foreign substances or debris from the body. The dysfunction of motile cilia leads to ciliopathy. In particular, damage to the motile cilia of the airways can cause or worsen respiratory disease, making it an attractive target for therapeutic interventions.

View Article and Find Full Text PDF

Congenital adrenal hyperplasia (CAH) encompasses a spectrum of disorders characterized by enzyme deficiencies in the hormone biosynthesis pathways of the adrenal glands, resulting in impaired cortisol synthesis. These disorders are typically inherited in an autosomal recessive pattern. Numerous enzymes participate in the hormonal synthesis within the adrenal glands, and the clinical presentation of affected individuals exhibits significant variability, contingent upon the specific enzyme deficiency and its severity.

View Article and Find Full Text PDF

This study presents the design, development, and optimization of multifunctional Doxorubicin (Dox)-loaded Indocyanine Green (ICG) proniosomal gel-derived niosomes, using Design of Experiments (2 factorial model). Herein, the multifunctional proniosomal gel was prepared using the coacervation phase separation technique, which on hydration forms niosomes. The effect of formulation variables on various responses including Zeta potential, Vesicle size, entrapment efficiency of Dox, entrapment efficiency of ICG, Invitro drug release at 72nd hour, and NIR hyperthermia temperature were studied using statistical models.

View Article and Find Full Text PDF

The deposition of monosodium urate (MSU) crystals induces the overexpression of reactive oxygen species (ROS) and proinflammatory cytokines in residential macrophages, further promoting the infiltration of inflammatory leukocytes in the joints of gouty arthritis. Herein, a peroxidase-mimicking nanoscavenger was developed by forming manganese dioxide over albumin nanoparticles loaded with an anti-inflammatory drug, indomethacin (BIM), to block the secretion of ROS and COX2-induced proinflammatory cytokines in the MSU-induced gouty arthritis model. In the MSU-induced arthritis mouse model, the BIM nanoparticles alleviated joint swelling, which is attributed to the abrogation of ROS and inflammatory cytokine secretions from proinflammatory macrophages that induces neutrophil infiltration and fluid building up in the inflammation site.

View Article and Find Full Text PDF

Vesical calculi are common in urological practice. However, encountering a giant vesical calculus weighing more than 100 g is rather rare. We report a patient who presented with mild symptoms and was found to have a single giant vesical calculus weighing about 1334 g.

View Article and Find Full Text PDF

Alexander disease (AxD) is a neurodegenerative astrogliopathy caused by mutation in the glial fibrillary acidic protein (GFAP) gene. A 42-year-old Korean man presented with temporary gait disturbance and psychiatric regression after a minor head trauma in the absence of bulbar symptoms and signs. Magnetic resonance images of the brain and spinal cord showed significant atrophy of the medulla oblongata and the entire spinal cord as well as contrast-enhanced T2 hypointensity in the basal ganglia.

View Article and Find Full Text PDF

Anti-melanoma differentiation-associated gene 5 (anti-MDA5) antibody is a myositis-specific marker detected in clinically amyopathic dermatomyositis (DM). DM with anti-MDA5 antibody can be accompanied by rapidly progressive interstitial lung disease (RP-ILD) and other autoimmune disorders. Until now, only one case of neuromyelitis optica (NMO) with anti-MDA5-positive DM has been reported worldwide, in which the patient achieved a favorable outcome with intensive immunotherapy.

View Article and Find Full Text PDF

Ependymal cells (ECs) are multiciliated neuroepithelial cells that line the ventricles of the brain and the central canal of the spinal cord (SC). How ependymal motile cilia are maintained remains largely unexplored. Here we show that zebrafish embryos deficient in Wnt signaling have defective motile cilia, yet harbor intact basal bodies.

View Article and Find Full Text PDF
Article Synopsis
  • The study involves synthesizing iron oxide (γFeO) nanoparticles using a hydrothermal method and encapsulating them with doxorubicin (Dox) using natural almond gum.
  • Characterization techniques like X-ray diffraction confirmed the crystal structure and highlighted superparamagnetic properties, while various analyses demonstrated the nanoparticles' morphology and heating capabilities.
  • Drug release tests indicated that the nanoparticles are more effective in acidic conditions, and in vitro studies assessed their uptake and impact on HeLA cell lines.
View Article and Find Full Text PDF

Nondystrophic myotonias are disorders of Na (Na1.4 or SCN4A) and Cl (CLCN1) channels in skeletal muscles, and frequently show phenotype heterogeneity. The molecular mechanism underlying their pathophysiology and phenotype heterogeneity remains unclear.

View Article and Find Full Text PDF

A new series of 1,3-diketone, heterocyclic and α,β-unsaturated derivatives were synthesized and evaluated for their AhR antagonist activity using zebrafish and mammalian cells. Compounds 1b, 2c, 3b and 5b showed significant AhR antagonist activity in a transgenic zebrafish model. Among them, compound 3b, and 5b were found to have excellent AhR antagonist activity with IC of 3.

View Article and Find Full Text PDF

Human granulocyte colony stimulating factor (hG-CSF), known as CSF3, plays an important role in the growth, differentiation, proliferation, survival, and activation of the granulocyte cell lineage such as neutrophils and their precursors. Functional reduction in native CSF3 protein results in reduced proliferation and activation of neutrophils and leads to neutropenia. Single nucleotide polymorphisms (SNPs) in the CSF3 gene may have deleterious effects on the CSF3 protein function.

View Article and Find Full Text PDF

DNA nanotechnology has laid a platform to construct a variety of custom-shaped nanoscale objects for functionalization of specific target materials to achieve programmability and molecular recognition. Herein, we prepared DNA nanostructures [namely, synthetic DNA rings (RDNA) and DNA duplexes extracted from salmon (SDNA)] containing metal ions (M) such as Cu, Ni, and Zn as payloads for delivery to exterminate highly pathologic hospital bacterial strains (e.g.

View Article and Find Full Text PDF

DNA nanotechnology can be used to create intricate DNA structures due to the ability to direct the molecular assembly of nanostructures through a bottom-up approach. Here, we propose nanocarriers composed of both synthetic and natural DNA for drug delivery. The topological, optical characteristics, and interaction studies of Cu/Ni/Zn-curcumin-conjugated DNA complexes were studied using atomic force microscopy (AFM), UV-vis spectroscopy, Fourier transform infrared and mass spectroscopy.

View Article and Find Full Text PDF

Oxide nanoparticles have numerous potential applications in medicine such as carriers for therapeutic drugs, contrast agents for bio-imaging and targeting agents for tumors. Oxide nanoparticles may also have an inherent cytotoxicity towards cancer cells, as recently found for cerium oxide. KNbO3 nanoparticles have a combination of low toxicity and nonlinear optical properties which make them attractive for use as a bio-imaging material.

View Article and Find Full Text PDF

The human HOXB13 gene encodes a 284 amino acid transcription factor belonging to the homeobox gene family containing a homeobox and a HoxA13 N-terminal domain. It is highly linked to hereditary prostate cancer, the majority of which is manifested as a result of a Single Nucleotide Polymorphism (SNP). In silico analysis of 95 missense SNP's corresponding to the non-homeobox region of HOXB13 predicted 21 nsSNP's to be potentially deleterious.

View Article and Find Full Text PDF

The human HOXB13 gene encodes a transcription factor containing a DNA-binding homeobox domain and a HoxA13 N-terminal domain. SNP is considered to be the primary genetic cause for hereditary prostate cancer (PCa). The study of functional nsSNPs would give an insight into the exact cause underlying the onset of hereditary PCa and possible methodologies for the cure or early management of the disease.

View Article and Find Full Text PDF

In our present study, the inhibitory effect of brazilein from Caesalpinia sappan on tyrosinase activity was investigated through multi-spectroscopic and molecular docking techniques. The result has shown that brazilein reversibly inhibited tyrosinase in a mixed type manner. The interaction of brazilein with the amino acid residues of tyrosinase has been validated through fluorescence quenching studies.

View Article and Find Full Text PDF

We present a room-temperature magnetoelectrically coupled bilayer thin film multiferroic system (BTS) 'Zn1-xSmxO/BaTiO3 (where x = 0.02 and 0.04)' grown on a SrTiO3 (100) substrate.

View Article and Find Full Text PDF

Nano-silver (Nano-Ag) particles were synthesized and then characterized using transmission electron microscopy (TEM) and X-ray diffractometry. TEM showed that Nano-Ag were spherical in shape and their size ranged from 40 to 60nm. X-ray diffractometry indicated that the sample was crystalline and had a face centered cubic structure of pure silver.

View Article and Find Full Text PDF