Following the publication of the above paper, we were contacted by the University of Illinois at Chicago, to request the retraction of the above article. Following a formal institutional investigation, the investigation panel concluded that the images in question had falsifying elements. Regarding the above study, the specific allegations that were investigated were that of falsifying elements of Fig.
View Article and Find Full Text PDFFollowing the publication of the above paper, we were contacted by the University of Illinois at Chicago, to request the retraction of the above article. Following a formal institutional investigation, the investigation panel concluded that the images in question had falsifying elements. Regarding the above study, the specific allegations that were investigated were that of falsifying elements of Fig.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2018
Mesenchymal stromal cell (MSC) derived exosomes mediate tissue protection and regeneration in many injuries and diseases by modulating cell protein production, protecting from apoptosis, inhibiting inflammation, and increasing angiogenesis. In the present study, daily intraperitoneal injection of MSC-derived exosomes protected alveolarization and angiogenesis in a newborn rat model of bronchopulmonary dysplasia (BPD) induced by 14 days of neonatal hyperoxia exposure (85% O). Exosome treatment during hyperoxia prevented disruption of alveolar growth, increased small blood vessel number, and inhibited right heart hypertrophy at P14, P21, and P56.
View Article and Find Full Text PDFOur previous studies indicate that Secreted Protein Acidic and Rich in Cysteine (SPARC) expression suppressed medulloblastoma tumor growth in vitro and in vivo. Here we sought to determine the effect of SPARC expression in medulloblastoma cells to chemotherapeutic agents. In this study, we show that SPARC expression induces cisplatin resistance in medulloblastoma cells.
View Article and Find Full Text PDFBackground: Src tyrosine kinase activates inducible nitric oxide synthase (iNOS) and, in turn, nitric oxide production as a means to transduce cell migration. Src tyrosine kinase plays a key proximal role to control α9β1 signaling. Our recent studies have clearly demonstrated the role of α9β1 integrin in matrix metalloproteinase-9 (MMP-9) and/or urokinase plasminogen activator receptor (uPAR)-mediated glioma cell migration.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common and malignant primary adult brain cancer. Allelic deletion on chromosome 14q plays an important role in the pathogenesis of GBM, and this site was thought to harbor multiple tumor suppressor genes associated with GBM, a region that also encodes microRNA-203 (miR-203). In this study, we sought to identify the role of miR-203 as a tumor suppressor in the pathogenesis of GBM.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is the most aggressive brain cancer, and to date, no curative treatment has been developed. In this study, we report that miR-211, a microRNA predicted to target MMP-9, is suppressed in grade IV GBM specimens. Furthermore, we found that miR-211 suppression in GBM involves aberrant methylation-mediated epigenetic silencing of the miR-211 promoter.
View Article and Find Full Text PDFOur previous studies showed that overexpression of secreted protein acidic and rich in cysteine (SPARC) induced autophagy-mediated apoptosis in PNET cells. In the present study, we attempted to elucidate the molecular mechanisms and signaling cascades associated with SPARC overexpression in combination with radiation therapy that eventually leads to autophagy-mediated apoptosis in neuroblastoma. SPARC expression in SK-N-AS and NB-1691 cells demonstrated the activation of caspase 3, cleavage of PARP and induction of apoptosis.
View Article and Find Full Text PDFSPARC is a matricellular glycoprotein and a putative radioresistance-reversal-gene. We therefore explored the possibility of SPARC expression on medulloblastoma radiosensitivity in vitro and in vivo. The combined treatment of the SPARC and irradiation resulted in increased cell death when compared to cells treated with irradiation alone in vitro and in vivo.
View Article and Find Full Text PDFDynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo.
View Article and Find Full Text PDFGlioma cancer cells adapt to changing microenvironment and shift from mitochondrial oxidative phosphorylation to aerobic glycolysis for their metabolic needs irrespective of oxygen availability. In the present study, we show that silencing MMP-9 in combination with uPAR/cathepsin B switch the glycolytic metabolism of glioma cells to oxidative phosphorylation (OXPHOS) and generate reactive oxygen species (ROS) to predispose glioma cells to mitochondrial outer membrane permeabilization. shRNA for MMP-9 and uPAR (pMU) as well as shRNA for MMP-9 and cathepsin B (pMC) activated complexes of mitochondria involved in OXPHOS and inhibited glycolytic hexokinase expression.
View Article and Find Full Text PDFThis article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
View Article and Find Full Text PDFBackground: Glioblastoma Multiforme (GBM) is the most lethal form of brain tumor. Efficient DNA repair and anti-apoptotic mechanisms are making glioma treatment difficult. Proteases such as MMP9, cathepsin B and urokinase plasminogen activator receptor (uPAR) are over expressed in gliomas and contribute to enhanced cancer cell proliferation.
View Article and Find Full Text PDFThe α9β1 integrin accelerates cell migration through binding of the α9 cytoplasmic domain to SSAT, which catalyzes the catabolism of higher order polyamines, spermidine and spermine, to the lower order polyamine, putrescine. SSAT levels were downregulated at both the mRNA and protein levels by shRNA-mediated simultaneous knockdown of MMP-9 and uPAR/cathepsin B. In addition, we noted a prominent reduction in the expression of SSAT with MMP-9 and uPAR/cathepsin B knockdown in the tumor regions of 5310 injected nude mice brains.
View Article and Find Full Text PDFIn more than 90% of cancers including glioma, telomere elongation reverse transcriptase (hTERT) is overexpressed. In the present study, we sought to explore whether matrix metalloproteinase-9 (MMP-9) shRNA could alter hTERT-mediated proliferation in glioma cells. MMP-9 shRNA induced senescence and apoptosis in glioma cells by inhibiting hTERT expression and telomere activity.
View Article and Find Full Text PDFBackground: Our previous work and that of others strongly suggests a relationship between the infiltrative phenotype of gliomas and the expression of MMP-2. Radiation therapy, which represents one of the mainstays of glioma treatment, is known to increase cell invasion by inducing MMP-2. Thus, inhibition of MMP-2 provides a potential means for improving the efficacy of radiotherapy for malignant glioma.
View Article and Find Full Text PDFSecreted protein acidic and rich in cysteine (SPARC) participates in the regulation of morphogenesis and cellular differentiation through its modulation of cell-matrix interactions. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we show that adenoviral-mediated overexpression of SPARC cDNA (Ad-DsRed-SP) elevated the expression of the neuronal markers NeuN, nestin, neurofilament, and MAP-2 in medulloblastoma cells and induced neuron-like differentiation.
View Article and Find Full Text PDFBackground: Abrogation of apoptosis for prolonged cell survival is essential in cancer progression. In our previous studies, we showed the MMP-2 downregulation induced apoptosis in cancer cell lines. Here, we attempt to investigate the exact molecular mechanism of how MMP-2 depletion leads to apoptosis in glioma xenograft cell lines.
View Article and Find Full Text PDFPharmacogenomics
April 2011
Background: Meningiomas are the most commonly occurring intracranial tumors and account for approximately 15-20% of central nervous system tumors. Surgery and radiation therapy is a common treatment for brain tumors, however, patients whose tumors recur after such treatments have limited therapeutic options. Earlier studies have reported important roles of uPA, uPAR and cathepsin B in tumor progression.
View Article and Find Full Text PDFMeningiomas are the most commonly occurring intracranial tumors and account for approximately 15-20% of central nervous system tumors. Patients whose tumors recur after surgery and radiation therapy have limited therapeutic options. It has also been reported recently that radiation triggers DNA repair, cell survival and cell proliferation, and reduces apoptosis via the induction of cellular protective mechanisms.
View Article and Find Full Text PDF