Publications by authors named "Chandramouli Paramanand"

Recently deep generative models have achieved impressive progress in modeling the distribution of training data. In this work, we present for the first time a generative model for 4D light field patches using variational autoencoders to capture the data distribution of light field patches. We develop a generative model conditioned on the central view of the light field and incorporate this as a prior in an energy minimization framework to address diverse light field reconstruction tasks.

View Article and Find Full Text PDF

We propose a method to remove motion blur in a single light field captured with a moving plenoptic camera. Since motion is unknown, we resort to a blind deconvolution formulation, where one aims to identify both the blur point spread function and the latent sharp image. Even in the absence of motion, light field images captured by a plenoptic camera are affected by a non-trivial combination of both aliasing and defocus, which depends on the 3D geometry of the scene.

View Article and Find Full Text PDF

Hand-held cameras inevitably result in blurred images caused by camera-shake, and even more so in high dynamic range imaging applications where multiple images are captured over a wide range of exposure settings. The degree of blurring depends on many factors such as exposure time, stability of the platform, and user experience. Camera shake involves not only translations but also rotations resulting in nonuniform blurring.

View Article and Find Full Text PDF