Hydrogel formulations of xenogeneic extracellular matrices have been widely used for topical wound care because of their exceptional tunability over other formulations like lyophilized sheets, powders, non-injectable gels, pastes, and ointments. This is important in the treatment of wounds with irregular shapes and depth. This study identified an injectable hydrogel formulation of porcine cholecyst extracellular matrix (60%) in medical-grade carboxymethyl cellulose (40%) as vehicle and evaluated its biomaterial properties.
View Article and Find Full Text PDFCompromised angiogenesis is a major factor contributing delayed wound healing in diabetic patients. Graft-assisted healing using synthetic and natural scaffolds supplemented with micromolecules for stimulating angiogenesis is the contemporary tissue engineering strategy for treating diabetic wounds. This study deployed the carbodiimide chemical reaction for coupling gelatin with a porcine cholecyst-derived scaffold (CDS) for enhancing angiogenesis.
View Article and Find Full Text PDFPolypropylene (PP) meshes are widely used for repairing skeletal muscle defects like abdominal hernia despite the chances of undesirable pro-inflammatory tissue reactions that demand revision surgeries in about 45% of cases. Attempts have been made to address the problem by modifying the mesh surface and architecture. These procedures have yielded only incremental improvements in the management of overall postoperative complications, and the search for a clinically viable therapeutic strategy continues.
View Article and Find Full Text PDF