A major challenge for clinical management of melanoma is the prevention and treatment of metastatic disease. Drug discovery efforts over the last 10 years have resulted in several drugs that improve the prognosis of metastatic melanoma; however, most patients develop early resistance to these treatments. We designed and synthesized, through a concise synthetic strategy, a series of hybrid olefin-pyridinone compounds that consist of structural motifs from tamoxifen and ilicicolin H.
View Article and Find Full Text PDFBackground: Despite numerous efforts to eradicate the disease, malaria continues to remain one of the most dangerous infectious diseases plaguing the world. In the absence of any effective vaccines and with emerging drug resistance in the parasite against the majority of anti-malarial drugs, the search for new drugs is urgently needed for effective malaria treatment.
Methods: The goal of the present study was to examine the compound library, based on indoles generated through diversity-oriented synthesis belonging to four different architecture, i.
The pore forming Perforin Like Proteins (PPLP), expressed in all stages of the parasite life cycle are critical for completion of the parasite life cycle. The high sequence similarity in the central Membrane Attack Complex/ Perforin (MACPF) domain among PLPs and their distinct functional overlaps define them as lucrative target for developing multi-stage antimalarial therapeutics. Herein, we evaluated the mechanism of Pan-active MACPF Domain (PMD), a centrally located and highly conserved region of PPLPs, and deciphered the inhibitory potential of specifically designed PMD inhibitors.
View Article and Find Full Text PDFNatural products offer an abundant source of diverse novel scaffolds that inspires development of next generation anti-malarials. With this vision, a library of scaffolds inspired by natural biologically active alkaloids was synthesized from chiral bicyclic lactams with steps/scaffold ratio of 1.7:1.
View Article and Find Full Text PDFThe synthesis of a new library of 5-arylidenethiazolidinone compounds using an efficient three component reaction with thiazolidine-2,4-dione, piperidine and appropriate aldehydes is reported. This reaction is excellently high yielding, tolerant towards a variety of aldehydes and provides access to these compounds in a single step (in comparison to low yielding multistep syntheses reported in the literature). Once the reaction is complete, the desired product precipitates out of the reaction mixture and is isolated by filtration and purified by washing and recrystallization.
View Article and Find Full Text PDFA library of arylidenefuropyridinediones was discovered as potent inhibitors of Leishmania donovani Topoisomerase 1 (LdTop1) where the active molecules displayed considerable inhibition with single digit micromolar EC50 values. This molecular library was designed via intuitive scaffold hopping and bioisosteric modification of known topoisomerase 1 inhibitors such as camptothecin, edotecarin and etc. The design was rationalized by molecular docking analysis of the compound prototype with human topoisomerase 1 (HTop1) and Leishmania donovani topoisomerase 1(LdTop1).
View Article and Find Full Text PDF[This corrects the article DOI: 10.1007/s11693-015-9171-0.].
View Article and Find Full Text PDFMalaria a global pandemic has engulfed nearly 0.63 million people globally. It is high time that a cure for malaria is required to stop its ever increasing menace.
View Article and Find Full Text PDFDNA topoisomerase I is a potential chemotherapeutic target. Here, we designed and synthesized a library comprising of hydantoin and thiohydantoin derivatives and tested them against human and Leishmania Top1. One of the thiohydantoin compounds with substituted thiophenyl as the central moiety (compound 15) exhibited potent inhibition of human Top1 (HTop1) through stabilization of Top1-DNA cleavage complexes and showed selective anticancer activity against human cervical carcinoma (HeLa) and breast carcinoma (MCF-7) cell lines.
View Article and Find Full Text PDFHerein we have reported design, synthesis and in vitro biological evaluation of a library of bicyclic lactams that led to the discovery of compounds 6 and 7 as a novel class of α-glucosidase inhibitors. They inhibited α-glucosidase (yeast origin) in a mixed type of inhibition with an IC50 of ∼150 nM. Molecular docking studies further substantiated screening results.
View Article and Find Full Text PDF4-Aminoquinolone piperidine amides (AQs) were identified as a novel scaffold starting from a whole cell screen, with potent cidality on Mycobacterium tuberculosis (Mtb). Evaluation of the minimum inhibitory concentrations, followed by whole genome sequencing of mutants raised against AQs, identified decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1) as the primary target responsible for the antitubercular activity. Mass spectrometry and enzyme kinetic studies indicated that AQs are noncovalent, reversible inhibitors of DprE1 with slow on rates and long residence times of ∼100 min on the enzyme.
View Article and Find Full Text PDFWe report 1,4-azaindoles as a new inhibitor class that kills Mycobacterium tuberculosis in vitro and demonstrates efficacy in mouse tuberculosis models. The series emerged from scaffold morphing efforts and was demonstrated to noncovalently inhibit decaprenylphosphoryl-β-D-ribose2'-epimerase (DprE1). With "drug-like" properties and no expectation of pre-existing resistance in the clinic, this chemical class has the potential to be developed as a therapy for drug-sensitive and drug-resistant tuberculosis.
View Article and Find Full Text PDF