Phase-separating peptides (PSPs) self-assembling into coacervate microdroplets (CMs) are a promising class of intracellular delivery vehicles that can release macromolecular modalities deployed in a wide range of therapeutic treatments. However, the molecular grammar governing intracellular uptake and release kinetics of CMs remains elusive. Here, we systematically manipulate the sequence of PSPs to unravel the relationships between their molecular structure, the physical properties of the resulting CMs, and their delivery efficacy.
View Article and Find Full Text PDFMacrocyclic peptides show promise in targeting high-value therapeutically relevant binding sites due to their high affinity and specificity. However, their clinical application is often hindered by low membrane permeability, which limits their effectiveness against intracellular targets. Previous studies focused on peptide conformations in various solvents, leaving a gap in understanding their interactions with and translocation through lipid bilayers.
View Article and Find Full Text PDFThe high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) strains and the formation of non-growing, dormant "persisters" subsets help bacteria evade antibiotic treatment and enhance bacterial resistance, which poses a serious threat to human life and health. It is urgent to discover novel antibacterial therapies effective against MRSA persisters. Thymol is a common nutraceutical with weak antibacterial and antitumor activities.
View Article and Find Full Text PDFRetinoic acid (RA) signaling is a master regulator of vertebrate development with crucial roles in directing body axis orientation and tissue differentiation, including in the reproductive system. However, a mechanistic understanding of how RA signaling promotes cell lineage identity in different tissues is often missing. Here, leveraging prostate organoid technology, we demonstrated that RA signaling orchestrates the commitment of adult mouse prostate progenitors to glandular identity, epithelial barrier integrity, and ultimately, proper specification of the prostatic lumen.
View Article and Find Full Text PDFProteoglycans contain glycosaminoglycans (GAGs) which are negatively charged linear polymers made of repeating disaccharide units of uronic acid and hexosamine units. They play vital roles in numerous physiological and pathological processes, particularly in governing cellular communication and attachment. Depending on their sulfonation state, acetylation, and glycosidic linkages, GAGs belong to different families.
View Article and Find Full Text PDFThe neuropeptide relaxin-3 is composed of an A chain and a B chain held together by disulfide bonds, and it modulates functions such as anxiety and food intake by binding to and activating its cognate receptor RXFP3, mainly through the B chain. Biased ligands of RXFP3 would help to determine the molecular mechanisms underlying the activation of G proteins and β-arrestins downstream of RXFP3 that lead to such diverse functions. We showed that the i, i+4 stapled relaxin-3 B chains, 14s18 and d(1-7)14s18, were Gα-biased agonists of RXFP3.
View Article and Find Full Text PDFRecombinase enzymes are extremely efficient at integrating very large DNA fragments into target genomes. However, intrinsic sequence specificities curtail their use to DNA sequences with sufficient homology to endogenous target motifs. Extensive engineering is therefore required to broaden applicability and robustness.
View Article and Find Full Text PDFAlthough stapled α-helical peptides can address challenging targets, their advancement is impeded by poor understandings for making them cell permeable while avoiding off-target toxicities. By synthesizing >350 molecules, we present workflows for identifying stapled peptides against Mdm2(X) with in vivo activity and no off-target effects. Key insights include a clear correlation between lipophilicity and permeability, removal of positive charge to avoid off-target toxicities, judicious anionic residue placement to enhance solubility/behavior, optimization of C-terminal length/helicity to enhance potency, and optimization of staple type/number to avoid polypharmacology.
View Article and Find Full Text PDFStapled peptides are a promising class of molecules with potential as highly specific probes of protein-protein interactions and as therapeutics. Hydrocarbon stapling affects the peptide properties through the interplay of two factors: enhancing the overall hydrophobicity and constraining the conformational flexibility. By constructing a series of virtual peptides, we study the role of each factor in modulating the structural properties of a hydrocarbon-stapled peptide PM2, which has been shown to enter cells, engage its target Mouse Double Minute 2 (MDM2), and activate p53.
View Article and Find Full Text PDFSummary: Protein structures carry signal of common ancestry and can therefore aid in reconstructing their evolutionary histories. To expedite the structure-informed inference process, a web server, Structome, has been developed that allows users to rapidly identify protein structures similar to a query protein and to assemble datasets useful for structure-based phylogenetics. Structome was created by clustering of the structures in RCSB PDB using 90% sequence identity and representing each cluster by a centroid structure.
View Article and Find Full Text PDFDAXX (Death Domain Associated Protein 6) is frequently upregulated in various common cancers, and its suppression has been linked to reduced tumor progression. Consequently, DAXX has gained significant interest as a therapeutic target in such cancers. DAXX is known to function in several critical biological pathways including chromatin remodelling, transcription regulation, and DNA repair.
View Article and Find Full Text PDFAntimicrobial peptides are promising alternatives to conventional antibiotics. Herein, we report a class of "tadpole-like" peptides consisting of an amphipathic α-helical head and an aromatic tail. A structure-activity relationship (SAR) study of "tadpole-like" temporin-SHf and its analogs revealed that increasing the number of aromatic residues in the tail, introducing Arg to the α-helical head and rearranging the peptide topology dramatically increased antimicrobial activity.
View Article and Find Full Text PDFThe scaffolding protein CARD11 is a critical mediator of antigen receptor signaling in lymphocytes. Hypomorphic (partial loss-of-function) mutations in CARD11 are associated with the development of severe atopic dermatitis, in which T cell receptor signaling is reduced and helper T cell differentiation is skewed to an allergy-associated type 2 phenotype. Here, we found that the docking protein DOK3 plays a key role in the pathogenesis of atopic dermatitis by suppressing CARD11 activity.
View Article and Find Full Text PDFThe c-Jun-NH2-terminal kinases (JNKs) regulate cell death, generally through the direct phosphorylation of both pro- and anti-apoptotic substrates. In this report, we demonstrate an alternate mechanism of JNK-mediated cell death involving the anti-apoptotic protein human apurinic/apyrimidinic endonuclease 1 (APE1). Treatment of cells with a variety of genotoxic stresses enhanced APE1-JNK (all isoforms of JNK1 or JNK2) interaction, specifically in cells undergoing apoptosis.
View Article and Find Full Text PDFCyclic peptides are poised to target historically difficult to drug intracellular protein-protein interactions, however, their general cell impermeability poses a challenge for characterizing function. Recent advances in microfluidics have enabled permeabilization of the cytoplasmic membrane by physical cell deformation (i.e.
View Article and Find Full Text PDFInvasive fungal disease is an emerging and serious public health threat globally. The expanding population of susceptible individuals, together with the rapid emergence of multidrug-resistant fungi pathogens, call for the development of novel therapeutic strategies beyond the limited repertoire of licensed antifungal drugs. Card9 is a critical signaling molecule involved in antifungal defense; we have previously identified Dok3 to be a key negative regulator of Card9 activity in neutrophils.
View Article and Find Full Text PDFMAD2 is a spindle assembly checkpoint protein that participates in the formation of mitotic checkpoint complex, which blocks mitotic progression. RNF8, an established DNA damage response protein, has been implicated in mitotic checkpoint regulation but its exact role remains poorly understood. Here, RNF8 proximity proteomics uncovered a role of RNF8-MAD2 in generating the mitotic checkpoint signal.
View Article and Find Full Text PDFGerm cell tumor (GCT) comprises more than 95% of cases of all testicular tumor. Seminomas are a type of GCT where majority of patient presents with favorable outcome. Metastasis to nonpulmonary are rare scenarios and are grouped as intermediate risk.
View Article and Find Full Text PDFSolid-state nanopores (ssNPs) are single-molecule sensors capable of label-free quantification of different biomolecules, which have become highly versatile with the introduction of different surface treatments. By modulating the surface charges of the ssNP, the electro-osmotic flow (EOF) can be controlled in turn affecting the in-pore hydrodynamic forces. Herein, we demonstrate that negative charge surfactant coating to ssNPs generates EOF that slows-down DNA translocation speed by >30-fold, without deterioration of the NP noise, hence significantly improving its performances.
View Article and Find Full Text PDFMis-sense mutations affecting TP53 promote carcinogenesis both by inactivating tumor suppression, and by conferring pro-carcinogenic activities. We report here that p53 DNA-binding domain (DBD) and transactivation domain (TAD) mis-sense mutants unexpectedly activate pro-carcinogenic epidermal growth factor receptor (EGFR) signaling via distinct, previously unrecognized molecular mechanisms. DBD- and TAD-specific TP53 mutants exhibited different cellular localization and induced distinct gene expression profiles.
View Article and Find Full Text PDFNew antimicrobials are urgently needed to combat Gram-negative bacteria, particularly multi-drug resistant (MDR) and phenotypically resistant biofilm species. At present, only sequence-defined alpha-peptides (e.g.
View Article and Find Full Text PDFPrecision medicine promises to transform healthcare for groups and individuals through early disease detection, refining diagnoses and tailoring treatments. Analysis of large-scale genomic-phenotypic databases is a critical enabler of precision medicine. Although Asia is home to 60% of the world's population, many Asian ancestries are under-represented in existing databases, leading to missed opportunities for new discoveries, particularly for diseases most relevant for these populations.
View Article and Find Full Text PDF