Int J Mol Sci
February 2022
Background: Breast cancer is the most common cancer in women globally, and diagnosing it early and finding potential drug candidates against multi-drug resistant metastatic breast cancers provide the possibilities of better treatment and extending life.
Methods: The current study aimed to evaluate the synergistic anti-metastatic activity of Curcumin (Cur) and Paclitaxel (Pacli) individually, the combination of Curcumin-Paclitaxel (CP), and also in conjugation with gold nanoparticles (AuNP-Curcumin (Au-C), AuNP-Paclitaxel (Au-P), and AuNP-Curcumin-Paclitaxel (Au-CP)) in various in vitro and in vivo models.
Results: The results from combination treatments of CP and Au-CP demonstrated excellent synergistic cytotoxic effects in triple-negative breast cancer cell lines (MDA MB 231 and 4T1) in in vitro and in vivo mouse models.
A scientific approach is presented describing the fabrication of nanoprobe (GloTrack) that can act as cardiac precursor label to segregate cells from cardiac/non cardiac origins and traced by magnetic resonance imaging (MRI). Signal regulatory protein alpha (SIRPA) and kinase domain receptor (KDR) recognizing antibodies, form a layer on super paramagnetic iron oxide nanoparticle - poly-ethylene glycol (SPION-PEG) complex, and bind to protein expressed on the surface of cardiac muscle cells. Physical attributes size, distribution, labelling efficiency, echocardiogram (ECG) changes and bio-distribution by MRI were analysed.
View Article and Find Full Text PDFSepsis is an abnormal immune response to infection characterized by an overwhelming systemic inflammation and cell death. Non-apoptotic cell death pertaining to pyroptosis, necroptosis and autophagy contribute to sepsis pathogenesis apart from classical apoptotic cell death. The objective of the current study is to investigate the presence of molecular markers of relevance to apoptotic and non-apoptotic cell death in control healthy subjects and septic patient survivors.
View Article and Find Full Text PDFThe increasing demand for organs for transplantation necessitates the development of substitutes to meet the structural and physiological functions. Tissue decellularization and recellularization aids in retaining the three-dimensional integrity, biochemical composition, tissue ultra-structure, and mechanical behavior, which makes them functionally suitable for organ transplantation. Herein, we attempted to rebuild functional liver grafts in small animal model (Wistar rat) with a potential of translation.
View Article and Find Full Text PDF