Publications by authors named "Chandra Rolle"

MGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit proliferation and promote differentiation. Loss-of-function mutations in MGA have been commonly identified in several hematological neoplasms, including acute myeloid leukemia (AML) with RUNX1::RUNX1T1, however, very little is known about the impact of these MGA alterations on normal hematopoiesis or disease progression. We show that representative MGA mutations identified in patient samples abolish protein-protein interactions and transcriptional activity.

View Article and Find Full Text PDF
Article Synopsis
  • UBTF tandem duplications (UBTF-TDs) are common alterations in both pediatric and adult acute myeloid leukemia (AML), linked to poor chemotherapy response and unique transcriptional profiles similar to other leukemia subtypes.
  • This study investigated how UBTF-TD influences leukemia, finding that it mislocalizes to specific genomic regions, affecting crucial gene clusters like HOXA/HOXB and MEIS1, which are relevant in these malignancies.
  • The research also showed that targeting UBTF-TD with the menin inhibitor SNDX-5613 effectively reduces tumor growth and alters the expression profile in leukemia cells, presenting a potential treatment option for this aggressive form of AML.
View Article and Find Full Text PDF

MGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit proliferation and promote differentiation. Loss-of-function mutations in have been commonly identified in several hematological neoplasms, including acute myeloid leukemia (AML) with however, very little is known about the impact of these alterations on normal hematopoiesis or disease progression. We show that representative mutations identified in patient samples abolish protein-protein interactions and transcriptional activity.

View Article and Find Full Text PDF

SAMD9 and SAMD9L germline mutations have recently emerged as a new class of predispositions to pediatric myeloid neoplasms. Patients commonly have impaired hematopoiesis, hypocellular marrows, and a greater risk of developing clonal chromosome 7 deletions leading to MDS and AML. We recently demonstrated that expressing SAMD9 or SAMD9L mutations in hematopoietic cells suppresses their proliferation and induces cell death.

View Article and Find Full Text PDF