Publications by authors named "Chandra Madramootoo"

Machine learning methodology has recently been considered a smart and reliable way to monitor water quality parameters in aquatic environments like reservoirs and lakes. This study employs both individual and hybrid-based techniques to boost the accuracy of dissolved oxygen (DO) and chlorophyll-a (Chl-a) predictions in the Wadi Dayqah Dam located in Oman. At first, an AAQ-RINKO device (CTD sensor) was used to collect water quality parameters from different locations and varying depths in the reservoir.

View Article and Find Full Text PDF

Fertilizer and water management practices have short- and long-term effects on soil chemical and physical properties and, in turn, greenhouse gas (GHG) emissions. The goal of this 4-yr field study was to establish the relationships between soil properties, agronomic practices, and GHG (CO and N O) emissions under different fertilizer and water table management practices. There were two fertilizer treatments: inorganic fertilizer (IF) and a mix of solid cattle manure and inorganic fertilizer (SCM), combined with tile drainage(DR) and controlled drainage with subirrigation(CDS).

View Article and Find Full Text PDF

Machine learning (ML) models are increasingly used to study complex environmental phenomena with high variability in time and space. In this study, the potential of exploiting three categories of ML regression models, including classical regression, shallow learning and deep learning for predicting soil greenhouse gas (GHG) emissions from an agricultural field was explored. Carbon dioxide (CO) and nitrous oxide (NO) fluxes, as well as various environmental, agronomic and soil data were measured at the site over a five-year period in Quebec, Canada.

View Article and Find Full Text PDF

Future climate change-driven alterations in precipitation patterns, increases in temperature, and rises in atmospheric carbon dioxide concentration ([CO]) are expected to alter agricultural productivity and environmental quality, while high latitude countries like Canada are likely to face more challenges from global climate change. However, potential climate change impact on GHG emissions from tile-drained fields is poorly documented. Accordingly, climate change impacts on GHG emissions, N losses to drainage and crop production in a subsurface-drained field in Southern Quebec, Canada were assessed using calibrated and validated RZWQM2 model.

View Article and Find Full Text PDF

Water table management with controlled drainage and subsurface-irrigation (SI) has been identified as a Beneficial Management Practice (BMP) to reduce nitrate leaching in drainage water. It has also been shown to increase crop yields during dry periods of the growing season, by providing water to the crop root zone, via upward flux or capillary rise. However, by retaining nitrates in anoxic conditions within the soil profile, SI could potentially increase greenhouse gas (GHG) fluxes, particularly NO through denitrification.

View Article and Find Full Text PDF

Greenhouse gas (GHG) emissions from agricultural soils are affected by various environmental factors and agronomic practices. The impact of inorganic nitrogen (N) fertilization rates and timing, and water table management practices on NO and CO emissions were investigated to propose mitigation and adaptation efforts based on simulated results founded on field data. Drawing on 2012-2015 data measured on a subsurface-drained corn (Zea mays L.

View Article and Find Full Text PDF

Increased incidences of mixed assemblages of microcystin-producing and nonproducing cyanobacterial strains in freshwater bodies necessitate development of reliable proxies for cyanotoxin risk assessment. Detection of microcystin biosynthetic genes in water blooms of cyanobacteria is generally indicative of the presence of potentially toxic cyanobacterial strains. Although much effort has been devoted toward elucidating the microcystin biosynthesis mechanisms in many cyanobacteria genera, little is known about the impacts of co-occurring cyanobacteria on cellular growth, mcy gene expression, or mcy gene copy distribution.

View Article and Find Full Text PDF

The biosand filter is a household-scale point-of-use water filtration system based on slow sand filtration, but modified for intermittent operation. Studies on slow sand filters show that intermittent operation reduces filter effectiveness. However, continuous versus intermittent operation of biosand filters has never been compared.

View Article and Find Full Text PDF

Spatial accuracy of hydrologic modeling inputs influences the output from hydrologic models. A pertinent question is to know the optimal level of soil sampling or how many soil samples are needed for model input, in order to improve model predictions. In this study, measured soil properties were clustered into five different configurations as inputs to the Soil and Water Assessment Tool (SWAT) simulation of the Castor River watershed (11-km area) in southern Quebec, Canada.

View Article and Find Full Text PDF

The increasing incidence of mixed assemblages of toxic and nontoxic cyanobacterial blooms in Quebec's freshwater bodies over the last decade, coupled with inherent inadequacies of current monitoring approaches, warrants development of sensitive and reliable tools for assessing the toxigenic potential of these water blooms. In this study, we applied three independent polymerase chain reaction (PCR) assays that simultaneously target the microcystin synthetase (mcy) genes A, E, and G to rapidly and reliably detect and quantify potentially toxic Microcystis genotypes in the Missisquoi bay, Quebec, Canada. Linear regressions of quantitative PCR threshold cycles (Ct ) against the logarithm of their respective Microcystis cell number equivalents resulted in highly significant linear curves with coefficients of determination (R(2) ) greater than 0.

View Article and Find Full Text PDF

Phosphorus (P) transport in subsurface runoff has increased despite the limited mobility of P in soils. This study investigated the ability of the non-ideal competitive adsorption (NICA) model to describe phosphate (PO(4)) adsorption for soils in southern Quebec (Canada). We measured the surface charge and PO(4) adsorption capacity for 11 agricultural soils.

View Article and Find Full Text PDF

Four different water sources (irrigation canals, small reservoirs, shallow wells, and tubewells), used for domestic purposes, in an irrigated area in southern Sri Lanka, were tested for Giardia spp. cysts and Cryptosporidium spp. oocysts.

View Article and Find Full Text PDF

The denitrification process and nitrous oxide (N2O) production in the soil profile are poorly documented because most research into denitrification has concentrated on the upper soil layer (0-0.15 m). This study, undertaken during the 1999 and 2000 growing seasons, was designed to examine the effects of water table management (WTM), nitrogen (N) application rate, and depth (0.

View Article and Find Full Text PDF

This research project was initiated to refine the knowledge available on the treatment of rural municipal wastewater by constructed wetlands. To determine the treatment capacity of a constructed wetland system receiving municipal lagoon effluents, the wetland was monitored over one treatment season, from May 19 to November 3, 2000. The wetland system consisted of a three-cell free-surface wetland, phosphorus adsorption slag filters and a vegetated filter strip.

View Article and Find Full Text PDF

Nitrate (NO3-) pollution of surface and subsurface waters has become a major problem in agricultural ecosystems. Field trials were conducted from 1996 to 1998 at St-Emmanuel, Quebec, Canada, to investigate the combined effects of water table management (WTM) and nitrogen (N) fertilization on soil NO3- level, denitrification rate, and corn (Zea mays L.) grain yield.

View Article and Find Full Text PDF