There is a plethora of chromatographic supports available in different shapes, sizes, functionalities, and chemical compositions, that could be employed for the numerous applications such as purification, scavenging, and target quantification. Therefore, it becomes critical to understand the chemical nature of these materials to select optimum conditions for ligand immobilization. In this chapter, we have explained some commonly employed ligand immobilization techniques to graft the ligand on the resin surfaces.
View Article and Find Full Text PDFThere are numerous investigated factors that limit brain cancer treatment efficacy such as ability of prescribed therapy to cross the blood-brain barrier (BBB), tumor specific delivery of a therapeutics, transport within brain interstitium, and resistance of tumor cells against therapies. Recent breakthroughs in the field of nano-biotechnology associated with developing multifunctional nano-theranostic emerged as an effective way to manage brain cancer in terms of higher efficacy and least possible adverse effects. Keeping challenges and state-of-art accomplishments into consideration, this review proposes a comprehensive, careful, and critical discussion focused on efficient nano-enabled platforms including nanocarriers for drug delivery across the BBB and nano-assisted therapies (e.
View Article and Find Full Text PDFAim: The aim of the present study was to access the need of daily cone-beam computed tomography (CBCT) and the requirement of in-house protocols of image acquisition frequency to reduce unnecessary exposure to the patients undergoing radiotherapy treatment.
Materials And Methods: The dose delivered during CBCT procedure (On-Board Imager, Trilogy, Varian medical system, Inc., Palo Alto, California) was assessed for pelvic and head and neck region.
We have developed a novel method to develop epoxy silica nanoparticles (EfSiNP) in a single pot. High surface coverage of epoxy functional groups between 150 and 57000 molecules per particles (∼10-10 molecules/mL of 200 nm EfSiNPs) was achieved for different preparation conditions. We then created a red colored probe by conjugating Fuchsin dye to the epoxy functionalities of EfSINPs.
View Article and Find Full Text PDFPeanut allergy can be life-threatening and is mediated by allergen-specific immunoglobulin E (IgE) antibodies. Investigation of IgE antibody binding to allergenic epitopes can identify specific interactions underlying the allergic response. Here, we report a surface plasmon resonance imaging (SPRi) immunoassay for differentiating IgE antibodies by epitope-resolved detection.
View Article and Find Full Text PDFSelective removal of albumin from human serum is an essential step prior to proteomic analyses, especially when using mass spectrometry. Here we report stable synthetic nanopockets on magnetic nanoparticle surfaces that bind to human serum albumin (HSA) with high affinity and specificity. The nanopockets are created by templating HSA on 200 nm silica-coated paramagnetic nanoparticles using polymer layers made using 4 organo-silane monomers.
View Article and Find Full Text PDFImmobilized antibody systems are the key to develop efficient diagnostics and separations tools. In the last decade, developments in the field of biomolecular engineering and crosslinker chemistry have greatly influenced the development of this field. With all these new approaches at our disposal, several new immobilization methods have been created to address the main challenges associated with immobilized antibodies.
View Article and Find Full Text PDFWe have developed a method that for the first time allowed us to synthesize silica particles in 20 minutes using a sol-gel preparation. Therefore, it is critically important to understand the synthesis mechanism and kinetic behavior in order to achieve a higher degree of fine tuning ability during the synthesis. In this study, we have employed our ability to modulate the physical nature of the reaction medium from sol-gel to emulsion, which has allowed us to halt the reaction at a particular time; this has allowed us to precisely understand the mechanism and chemistry of the silica polymerization.
View Article and Find Full Text PDFUnderstanding of the synthesis kinetics and our ability to modulate medium conditions allowed us to generate nanoparticles via an ultra-fast process. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as precursor and 50% ethanol and sodium hydroxide catalyst. Synthesis is performed under gentle conditions at 20 °C for 20 min Long synthesis time and catalyst-associated drawbacks are most crucial in silica nanoparticle synthesis.
View Article and Find Full Text PDFEarly detection and reliable diagnostics are keys to effectively design cancer therapies with better prognoses. The simultaneous detection of panels of biomarker proteins holds great promise as a general tool for reliable cancer diagnostics. A major challenge in designing such a panel is to decide upon a coherent group of biomarkers which have higher specificity for a given type of cancer.
View Article and Find Full Text PDFIt is now widely recognised that the earliest changes that occur on a cell when it is stressed or becoming diseased are alterations in its surface glycosylation. Current state-of-the-art technologies in glycoanalysis include mass spectrometry, protein microarray formats, techniques in cytometry and more recently, glyco-quantitative polymerase chain reaction (Glyco-qPCR). Techniques for the glycoprofiling of the surfaces of single cells are either limited to the analysis of large cell populations or are unable to handle multiple and/or sequential probing.
View Article and Find Full Text PDFMicroarrays (Basel)
July 2014
Microfluidic-based micromosaic technology has allowed the pattering of recognition elements in restricted micrometer scale areas with high precision. This controlled patterning enabled the development of highly multiplexed arrays multiple analyte detection. This arraying technology was first introduced in the beginning of 2001 and holds tremendous potential to revolutionize microarray development and analyte detection.
View Article and Find Full Text PDFCritical limitation of nanoparticles (NP) is their aggregation after functionalisation and antibody cross-linking. We analysed the cause of this aggregation with respect to functionalities (carboxyls and amines) on the NP surface. We have devised a low cost novel method to reduce such aggregations during protein cross-linking and validated it by probing the platelet surface with platelet surface-specific anti-CD41 antibody conjugated NPs.
View Article and Find Full Text PDFA fourth generation PAMAM dendrimer has been successfully employed for the development of a single step synthesis strategy for self-assembled Ag-Au nanohybrid structures. The surface plasmon resonance properties and the degree of self-assembly of the nanohybrid are strongly correlated with the stoichiometry of the metals which gives rise to enhanced plasmonic properties. The enhanced plasmonic response of the nanohybrids is modeled and is validated experimentally in a model HRP (horseradish peroxidise) bioassay carried out on an SPR-based biochip platform.
View Article and Find Full Text PDFIn this work, gold-silica plasmonic nanohybrids have been synthesized as model systems which enable tuning of dye fluorescence enhancement/quenching interactions. For each system, a dye-doped silica core is surrounded by a 15 nm spacer region, which in turn is surrounded by gold nanoparticles (GNPs). The GNPs are either covalently conjugated via mercapto silanization to the spacer or encapsulated in a separate external silica shell.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2012
A novel gold nanoarray (NA)-based platform was developed for microarray applications. This novel approach is based upon the principle of nanosphere lithography and can be used for one-step antibody immobilization. The developed platform was checked by functionalizing with cysteine followed by capturing biotinylated antibody and detecting it with dye-conjugated steptravidin.
View Article and Find Full Text PDFA highly bright and photostable, fluorescent nanohybrid particle is presented which consists of gold nanoparticles (GNPs) embedded in dye-doped silica in a core-shell configuration. The dye used is the near-infrared emitting 4,5-benzo-5'-(iodoacetaminomethyl)-1',3,3,3',3'-pentamethyl-1-(4-sulfobutyl) indodicarbo cyanine. The nanohybrid architecture comprises a GNP core which is separated from a layer of dye molecules by a 15 nm buffer layer and has an outer protective, undoped silica shell.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2012
Nanospheres lithographic (NSL) method has been used to fabricate nano-structured arrays (NAs) of hexagonally close-packed gold (Au) using polystyrene beads [PS, diameter ∼300 nm] as mask. The developed NA was incorporated with a customized and cheap microfluidics system to demonstrate its applicability as an alternative easy and efficient platform for multiplex analysis and Lab-on-a-Chip applications. The chip functionality was demonstrated with horseradish peroxidase (HRP) and anti-HRP antibody as model for recognition system.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2011
The surface functionalization of a noble metal is crucial in a surface plasmon resonance-based biomolecular detection system because the interfacial coating must retain the activity of immobilized biomolecules while enhancing the optimal loading. We present here a one-step, room-temperature, high-speed, gas-phase plasma polymerization process for functionalizing gold substrates using siloxane as an adhesion layer and acrylic acid as a functional layer. Siloxane- and thiol-based coatings were compared for their performance as adhesion and the interfacial layer for subsequent functionalization.
View Article and Find Full Text PDFAntibody immobilization strategies (random, covalent, orientated and combinations of each) were examined to determine their performance in a surface plasmon resonance-based immunoassay using human fetuin A (HFA) as the model antigen system. The random antibody immobilization strategy selected was based on passive adsorption of anti-HFA antibody on 3-aminopropyltriethoxysilane (APTES)-functionalized gold (Au) chips. The covalent strategy employed covalent crosslinking of anti-HFA antibody on APTES-functionalized chips using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) and sulfo-N-hydroxysuccinimide (SNHS).
View Article and Find Full Text PDFFluorescence lifetime correlation spectroscopy (FLCS) is presented as a single-step label-free detection method for probing the amine silanization-driven spontaneous 3D self-assembly of freestanding gold nanoparticles (GNPs) in solution. Unlike the conventional methods of studying self-assembly, for example, UV-vis spectroscopy and electron microscopy, FLCS utilizes the intrinsic gold fluorescence. The significance of this approach is to amalgamate the measurement of optical and hydrodynamic size properties simultaneously to achieve a more coherent description of the self-assembly pathway.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2011
We report here substantial interference from N-hydroxysuccinimide (NHS) in the bicinchoninic acid (BCA) protein assay. NHS is one of the most commonly used crosslinking agents in bioanalytical sciences, which can lead to serious potential errors in the BCA protein assay based protein estimation if it is present in the protein analyte solution. It was identified to be a reducing substance, which interferes with the BCA protein assay by reducing Cu(2+) in the BCA working reagent.
View Article and Find Full Text PDFThis protocol describes an improved and optimized approach to develop rapid and high-sensitivity ELISAs by covalently immobilizing antibody on chemically modified polymeric surfaces. The method involves initial surface activation with KOH and an O(2) plasma, and then amine functionalization with 3-aminopropyltriethoxysilane. The second step requires covalent antibody immobilization on the aminated surface, followed by ELISA.
View Article and Find Full Text PDF