Publications by authors named "Chandra B KC"

Acenes and -heteroacenes have been synthesized and studied for over a century because of their fundamentally interesting materials properties and promise for device applications. Within this context, our laboratory has previously synthesized nitrogen-containing tetrabenzo[,,,]pentacenes an aza-Diels-Alder reaction-based approach, and herein, we expand our methodology to obtain substituted, expanded, functionalized, and dimeric tetrabenzoacenes. Overall, our study adds to the limited number of tetrabenzoacene derivatives reported to date and may open further opportunities for these materials in organic optoelectronics applications.

View Article and Find Full Text PDF

Dye-sensitized solar cells (DSSCs) were built to probe the effect of the number of cyanocinnamic acid anchoring groups on the ring periphery of phenothiazine dyes. Two kinds of dyes, one with substitution on the N-terminal (1) and the other at the C-3 aromatic ring (2-5), have been synthesized for this purpose. Additionally, the number of cyanocinnamic acid groups have been increased to two in the case of compound 6.

View Article and Find Full Text PDF

Subphthalocyanine (SubPc), a unique ring-reduced member of the common phthalocyanines family, although known for its higher absorptivity, reveals narrow absorption with peak maxima around 570 nm thus limiting its utility in light-energy-harvesting applications. In the present study, by peripheral thio-aryl substitution of SubPc macrocycle, the spectral properties have been modulated to extend the absorption and emission well into the visible/near-IR region. Additionally, for α-ring-substituted derivatives, facile oxidation of SubPc was witnessed, thus making these derivatives better electron donors.

View Article and Find Full Text PDF

Sequential electron/hole transfer between energetically well-positioned entities of photosynthetic reaction center models is one of the commonly employed mechanisms to generate long-lived charge-separated states. A wealth of information, applicable towards light energy harvesting and building optoelectronic devices, has been acquired from such studies. In the present study, we report on the effect of spacer (direct or via phenoxy linkage) connecting the hole shifting agent, phenothiazine (PTZ), on photoinduced charge stabilization in subphthalocyanine-fullerene donor-acceptor conjugates.

View Article and Find Full Text PDF

A series of phenothiazine-fulleropyrrolidine (PTZ-C60) dyads having fullerene either at the C-3 aromatic ring position or at the N-position of phenothiazine macrocycle were newly synthesized and characterized. Photoinduced electron transfer leading to PTZ(•+)-C60(•-) charge-separated species was established from studies involving femtosecond transient absorption spectroscopy. Because of the close proximity of the donor and acceptor entities, the C-3 ring substituted PTZ-C60 dyads revealed faster charge separation and charge recombination processes than that observed in the dyad functionalized through the N-position.

View Article and Find Full Text PDF

A broadband capturing, charge stabilizing, photosynthetic antenna-reaction center model compound has been newly synthesized and characterized. The model compound is comprised of a zinc porphyrin covalently linked to three units of triphenylamine entities and a zinc phthalocyanine entity. The absorption and fluorescence spectra of zinc porphyrin complemented that of zinc phthalocyanine offering broadband coverage.

View Article and Find Full Text PDF

A new approach to probe the effect of graphene on photochemical charge separation in donor-acceptor conjugates is devised. For this, multimodular donor-acceptor conjugates, composed of three molecules of pyrene, a subphthalocyanine, and a fullerene C60 ((Pyr)3 SubPc-C60 ), have been synthesized and characterized. These systems were hybridized on few-layer graphene through π-π stacking interactions of the three pyrene moieties.

View Article and Find Full Text PDF

Novel photosynthetic reaction center model compounds of the type donor2 -donor1 -acceptor, composed of phenothiazine, BF2 -chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods. X-ray structures of three of the phenothiazine-BODIPY intermediate compounds have been solved to visualize the substitution effect caused by the phenothiazine on the BODIPY macrocycle. Optical absorption and emission, computational, and differential pulse voltammetry studies were systematically performed to establish the molecular integrity of the triads.

View Article and Find Full Text PDF

For molecular imprinting of oxidatively electroactive analytes by electropolymerization, we used herein reductively electroactive functional monomers. As a proof of concept, we applied C60 fullerene adducts as such for the first time. For that, we derivatized C60 to bear either an uracil or an amide, or a carboxy addend for recognition of the adenosine-5'-triphosphate (ATP) oxidizable analyte with the ATP-templated molecularly imprinted polymer (MIP-ATP).

View Article and Find Full Text PDF

A multilayer Langmuir-Blodgett (LB) film of the self-assembled electron donor-acceptor dyad of Zn phthalocyanine, appended with four long-chain aliphatic ether peripheral substituents, and an imidazole adduct of C60 was prepared and applied as a photoactive material in a photoelectrochemical cell. Changes in the simultaneously recorded surface pressure and surface potential vs area per molecule compression isotherms for Langmuir films of the dyad and, separately, of its components helped to identify phase transitions and mutual interactions of molecules in films. The Brewster angle microscopy (BAM) imaging of the Langmuir films showed circular condensed phase domains of the dyad molecules.

View Article and Find Full Text PDF

A novel donor-acceptor pentad featuring subphthalocyanine and fullerene as the primary electron donor and acceptor, and three phenothiazine entities as secondary hole transferring agents, have been newly synthesized and characterized as an photosynthetic reaction center model compound. Occurrences of ultrafast photoinduced electron transfer (PET) and slower charge recombination are witnessed in the pentad from the femtosecond and nanosecond transient absorption studies.

View Article and Find Full Text PDF

Thin films of conducting molecularly imprinted polymers (MIPs) were prepared for simultaneous chronoamperometry (CA) and piezoelectric microgravimetry (PM) determination of several explosive nitroaromatic compounds (NTs) including 2,4,6-trinitrophenol (TNP), 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), and 2,4-dinitrotoluene (DNT). For that, the bis(2,2'-bithienyl)-(4-aminophenyl)methane 1 functional monomer allowing for π-π stacking recognition of the NTs was designed and synthesized. Both theoretical DFT calculations at the M062X/3-21G* level and experimental fluorescence titrations indicated the 1:1 stoichiometry of the 1 and NT prepolymerization complexes formed in solutions.

View Article and Find Full Text PDF

A novel supramolecular triad composed of a zinc porphyrin-zinc phthalocyanine dyad and fullerenes has been assembled using a 'two-point' axial binding approach, and occurrence of efficient photoinduced energy transfer followed by electron transfer is demonstrated.

View Article and Find Full Text PDF

Graphene oxide decorated with an electron donor, zinc(II) phthalocyanine, and an electron acceptor, fullerene, has been synthesized, and photoinduced electron transfer leading to charge-separation is reported.

View Article and Find Full Text PDF