Publications by authors named "Chandni Bansal"

Within the continuous tug-of-war between plants and microbes, RNA silencing stands out as a key battleground. Pathogens, in their quest to colonize host plants, have evolved a diverse arsenal of silencing suppressors as a common strategy to undermine the host's RNA silencing-based defenses. When RNA silencing malfunctions in the host, genes that are usually targeted and silenced by microRNAs (miRNAs) become active and can contribute to the reprogramming of host cells, providing an additional defense mechanism.

View Article and Find Full Text PDF
Article Synopsis
  • - Compound 1 effectively inhibits the TGF-β receptor type-1 but lacks metabolic stability, making it less viable for use.
  • - Researchers modified a part of this compound to improve its stability and enhance its effectiveness in cells and in mice.
  • - The study details the structure-activity relationship (SAR) that resulted in the identification of MDV6058 (PF-06952229) as a promising candidate for further preclinical development.
View Article and Find Full Text PDF

Heat stress transcription factors (HSFs) and microRNAs (miRNAs) regulate different stress and developmental networks in plants. Regulatory feedback mechanisms are at the basis of these networks. Here, we report that plants improve their heat stress tolerance through HSF-mediated transcriptional regulation of MIR169 and post-transcriptional regulation of Nuclear Factor-YA (NF-YA) transcription factors.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small (20-24 nucleotides) non-coding ribo-regulatory molecules with significant roles in regulating target mRNA and long non-coding RNAs at transcriptional and post-transcriptional levels. Rapid advancement in the small RNA sequencing methods with integration of degradome sequencing has accelerated the understanding of miRNA-mediated regulatory hubs in plants and yielded extensive annotation of miRNAs and corresponding targets. However, it is becoming clear that large numbers of such annotations are questionable.

View Article and Find Full Text PDF

The footprint of tomato cultivation, a cool region crop that exhibits heat stress (HS) sensitivity, is increasing in the tropics/sub-tropics. Knowledge of novel regulatory hot spots from varieties growing in the Indian sub-continent climatic zones could be vital for developing HS-resilient crops. Comparative transcriptome-wide signatures of a tolerant (CLN1621L) and sensitive (CA4) cultivar pair shortlisted from a pool of varieties exhibiting variable thermo-sensitivity using physiological-, survival- and yield-related traits revealed redundant to cultivar-specific HS regulation.

View Article and Find Full Text PDF