Publications by authors named "Chandler A Becker"

As a result of a number of national initiatives, we are seeing rapid growth in the data important to materials science that are available over the web. Consequently, it is becoming increasingly difficult for researchers to learn what data are available and how to access them. To address this problem, the Research Data Alliance (RDA) Working Group for International Materials Science Registries (IMRR) was established to bring together materials science and information technology experts to develop an international federation of registries that can be used for global discovery of data resources for materials science.

View Article and Find Full Text PDF

The design of next-generation alloys through the integrated computational materials engineering (ICME) approach relies on multiscale computer simulations to provide thermodynamic properties when experiments are difficult to conduct. Atomistic methods such as density functional theory (DFT) and molecular dynamics (MD) have been successful in predicting properties of never before studied compounds or phases. However, uncertainty quantification (UQ) of DFT and MD results is rarely reported due to computational and UQ methodology challenges.

View Article and Find Full Text PDF

The current push for rigor and reproducibility is driven by a desire for confidence in research results. Here, we suggest a framework for a systematic process, based on consensus principles of measurement science, to guide researchers and reviewers in assessing, documenting, and mitigating the sources of uncertainty in a study. All study results have associated ambiguities that are not always clarified by simply establishing reproducibility.

View Article and Find Full Text PDF

Structure quantification is key to successful mining and extraction of core materials knowledge from both multiscale simulations as well as multiscale experiments. The main challenge stems from the need to transform the inherently high dimensional representations demanded by the rich hierarchical material structure into useful, high value, low dimensional representations. In this paper, we develop and demonstrate the merits of a data-driven approach for addressing this challenge at the atomic scale.

View Article and Find Full Text PDF