Publications by authors named "Chanderpratap Singh"

Bifunctional electrocatalysts for efficient hydrogen generation from water splitting must overcome both the sluggish water dissociation step of the alkaline hydrogen evolution half-reaction (HER) and the kinetic barrier of the anodic oxygen evolution half-reaction (OER). Nickel phosphides are a promising catalysts family and are known to develop a thin active layer of oxidized Ni in an alkaline medium. Here, NiP was recognized as a suitable platform for the electrochemical production of γ-NiOOH─a particularly active phase─because of its matching crystallographic structure.

View Article and Find Full Text PDF

In recent years, we are witnessing a substantially growing scientific interest in MOFs and their derived materials in the field of electrocatalysis. MOFs acting as a self-sacrificing template offer various advantages for the synthesis of carbon-rich materials, metal oxides, and metal nanostructures containing graphitic carbon-based materials benefiting from the high surface area, porous structure, and abundance of metal sites and organic functionalities. Yet, despite recent advancement in the field of MOF-derived materials, there are still several significant challenges that should be overcomed, to obtain better control and understanding on the factors determining their chemical, structural and catalytic nature.

View Article and Find Full Text PDF

The construction of artificial solar fuel generating systems requires the heterogenization of large quantities of catalytically active sites on electrodes. In that sense, metal-organic frameworks (MOFs) have been utilized to assemble unpreceded concentration of electrochemically active molecular catalysts to drive energy-conversion electrocatalytic reactions. However, despite recent advances in MOF-based electrocatalysis, so far no attempt has been made to exploit their unique chemical modularity in order to tailor the electrocatalytic function of MOF-anchored active sites at the molecular level.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have emerged as outstanding electrocatalysts for water oxidation. Commonly, MOFs are utilized for electrocatalytic water oxidation either in pristine or pyrolyzed form. Yet, despite significant advancements in their catalytic performance, further improvement requires new insights on the parameters influencing MOF-based catalysts activity.

View Article and Find Full Text PDF

A novel class of pyrene-based conjugated porous organic polymers having an N-containing network was developed by employing Buchwald-Hartwig coupling for supercapacitor energy storage. The pristine polymer was found to exhibit a specific capacitance of 456 F g-1 at 0.5 A g-1 current density with excellent long-term cyclic stability.

View Article and Find Full Text PDF

Manganese dioxide nanomaterials with "Koosh-ball"-like morphology (MnO -KBs) as well as worm-like nanotubes (MnO -NWs) are obtained by employing Tween 20 as the reducing and structure-directing agent, and KMnO as a MnO precursor. Whereas the MnO -KBs are interconnected through tubular extensions, the MnO -NWs are largely disconnected. Both MnO -KBs and MnO -NWs have large BET surface areas (>200 m  g ), and are thermally robust up to 300 °C.

View Article and Find Full Text PDF

Correction for 'Proton conduction through oxygen functionalized few-layer graphene' by Chanderpratap Singh et al., Chem. Commun.

View Article and Find Full Text PDF

The first report of oxygen functionalized few-layer graphene (OFG) having an interlayer distance of 3.6 Å as an excellent proton conductor (8.7 × 10 S cm at 80 °C, 95% RH) utilizing hydrophilic oxygen functionalities present at sheet edges bypassing the theoretical limitation of proton conduction through a basal plane.

View Article and Find Full Text PDF