The optimization of oxazole-based PDE4 inhibitor 1 has led to the identification of both oral (compound 16) and inhaled (compound 34) PDE4 inhibitors. Selectivity against PDE10/PDE11, off target screening, and in vivo activity in the rat are discussed.
View Article and Find Full Text PDFOptimization of oxazole-based PDE4 inhibitors has led to the discovery of a series of quinolyl oxazoles, with 4-benzylcarboxamide and 5-α-aminoethyl groups which exhibit picomolar potency against PDE4. Selectivity profiles and in vivo biological activity are also reported.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2007
Substituted quinolyl oxazoles were discovered as a novel and highly potent series of phosphodiesterase 4 (PDE4) inhibitors. Structure-activity relationship studies revealed that the oxazole core, with 4-carboxamide and 5-aminomethyl groups, is a novel PDE4 inhibitory pharmacophore. Selectivity profiles and in vivo biological activity are also reported.
View Article and Find Full Text PDFSch527123 [2-hydroxy-N,N-dimethyl-3-[[2-[[1(R)-(5-methyl-2-furanyl)propyl]amino]-3,4-dioxo-1-cyclobuten-1-yl]amino]ben-zamide] is a potent, selective antagonist of the human CXCR1 and CXCR2 receptors (Gonsiorek et al., 2007). Here we describe its pharmacologic properties at rodent CXCR2 and at the CXCR1 and CXCR2 receptors in the cynomolgus monkey, as well as its in vivo activity in models demonstrating prominent pulmonary neutrophilia, goblet cell hyperplasia, and mucus production.
View Article and Find Full Text PDFThe Brown-Norway rat is often used to study the allergic pulmonary response. However, relatively little is known about the delayed phase reactions after allergen challenge in this species. To evaluate the temporal changes in lung function and elucidate the mechanisms involved in the delayed phase response, Brown-Norway rats were sensitized and challenged to aerosolized ovalbumin and lung functions were measured by forced expiratory maneuvers and forced oscillation for up to 10 days after a single antigen challenge.
View Article and Find Full Text PDFBackground: Airway closure is frequently observed in human asthma. However, limited information exists on the factors that cause this condition. In this study, an allergic cynomolgus monkey model was used to characterize the condition of airway closure and assess the contribution of histamine H1 receptors to this response.
View Article and Find Full Text PDF